已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing Ion Separation: Covalent-Organic-Framework Membranes for Sustainable Energy and Water Applications

共价键 分离(统计) 离子 共价有机骨架 化学 化学工程 可持续能源 纳米技术 环境化学 材料科学 有机化学 计算机科学 工程类 可再生能源 机器学习 电气工程 生物化学
作者
Weipeng Xian,Di Wu,Zhuozhi Lai,Sai Wang,Qi Sun
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (14): 1973-1984 被引量:5
标识
DOI:10.1021/acs.accounts.4c00268
摘要

ConspectusMembranes are pivotal in a myriad of energy production processes and modern separation techniques. They are essential in devices for energy generation, facilities for extracting energy elements, and plants for wastewater treatment, each of which hinges on effective ion separation. While biological ion channels show exceptional permeability and selectivity, designing synthetic membranes with defined pore architecture and chemistry on the (sub)nanometer scale has been challenging. Consequently, a typical trade-off emerges: highly permeable membranes often sacrifice selectivity and vice versa. To tackle this dilemma, a comprehensive understanding and modeling of synthetic membranes across various scales is imperative. This lays the foundation for establishing design criteria for advanced membrane materials. Key attributes for such materials encompass appropriately sized pores, a narrow pore size distribution, and finely tuned interactions between desired permeants and the membrane. The advent of covalent-organic-framework (COF) membranes offers promising solutions to the challenges faced by conventional membranes in selective ion separation within the water-energy nexus. COFs are molecular Legos, facilitating the precise integration of small organic structs into extended, porous, crystalline architectures through covalent linkage. This unique molecular architecture allows for precise control over pore sizes, shapes, and distributions within the membrane. Additionally, COFs offer the flexibility to modify their pore spaces with distinct functionalities. This adaptability not only enhances their permeability but also facilitates tailored interactions with specific ions. As a result, COF membranes are positioned as prime candidates to achieve both superior permeability and selectivity in ion separation processes.In this Account, we delineate our endeavors aimed at leveraging the distinctive attributes of COFs to augment ion separation processes, tackling fundamental inquiries while identifying avenues for further exploration. Our strategies for fabricating COF membranes with enhanced ion selectivity encompass the following: (1) crafting (sub)nanoscale ion channels to enhance permselectivity, thereby amplifying energy production; (2) implementing a multivariate (MTV) synthesis method to control charge density within nanochannels, optimizing ion transport efficiency; (3) modifying the pore environment within confined mass transfer channels to establish distinct pathways for ion transport. For each strategy, we expound on its chemical foundations and offer illustrative examples that underscore fundamental principles. Our efforts have culminated in the creation of groundbreaking membrane materials that surpass traditional counterparts, propelling advancements in sustainable energy conversion, waste heat utilization, energy element extraction, and pollutant removal. These innovations are poised to redefine energy systems and industrial wastewater management practices. In conclusion, we outline future research directions and highlight key challenges that need addressing to enhance the ion/molecular recognition capabilities and practical applications of COF membranes. Looking forward, we anticipate ongoing advancements in functionalization and fabrication techniques, leading to enhanced selectivity and permeability, ultimately rivaling the capabilities of biological membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
苹果凝旋关注了科研通微信公众号
3秒前
多情的忆之完成签到,获得积分10
4秒前
哆啦顺利毕业完成签到 ,获得积分10
6秒前
乐乐乐乐乐乐应助funnymud采纳,获得30
7秒前
小马甲应助NTMD采纳,获得50
7秒前
7秒前
桦奕兮完成签到 ,获得积分10
7秒前
8秒前
CipherSage应助老中医采纳,获得30
10秒前
11秒前
葡月将军发布了新的文献求助10
12秒前
12秒前
12秒前
玛尼发布了新的文献求助10
12秒前
温馨发布了新的文献求助10
12秒前
领导范儿应助TOJNRU采纳,获得10
19秒前
19秒前
风华正茂完成签到,获得积分10
21秒前
深情的友易完成签到,获得积分10
21秒前
大力超大力完成签到 ,获得积分10
22秒前
23秒前
26秒前
29秒前
迷人世开完成签到,获得积分0
30秒前
彭于晏应助Diss采纳,获得10
33秒前
自信号厂完成签到 ,获得积分10
33秒前
未央完成签到 ,获得积分10
40秒前
Cosmosurfer完成签到,获得积分10
41秒前
41秒前
YJL完成签到 ,获得积分10
44秒前
46秒前
草上飞完成签到 ,获得积分10
46秒前
48秒前
54秒前
鬼见愁应助张不大采纳,获得10
55秒前
Tina完成签到 ,获得积分10
55秒前
56秒前
打打应助笨笨芯采纳,获得10
56秒前
葡月将军完成签到,获得积分20
58秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085590
求助须知:如何正确求助?哪些是违规求助? 3624583
关于积分的说明 11496796
捐赠科研通 3338728
什么是DOI,文献DOI怎么找? 1835305
邀请新用户注册赠送积分活动 903857
科研通“疑难数据库(出版商)”最低求助积分说明 821978