Machine Learning-Driven Advancements in Liposomal Formulations for Targeted Drug Delivery: A Narrative Literature Review

药物输送 脂质体 叙述性评论 药品 靶向给药 医学 重症监护医学 纳米技术 计算机科学 药理学 材料科学
作者
Benyamin Hoseini,Mahmoud Reza Jaafari,Amin Golabpour,Zahra Rahmatinejad,Maryam Karimi,Saeid Eslami
出处
期刊:Current Drug Delivery [Bentham Science Publishers]
卷期号:21 被引量:4
标识
DOI:10.2174/0115672018302321240620072039
摘要

Nanoliposomal formulations, utilizing lipid bilayers to encapsulate therapeutic agents, hold promise for targeted drug delivery. Recent studies have explored the application of machine learning (ML) techniques in this field. This study aims to elucidate the motivations behind integrating ML into liposomal formulations, providing a nuanced understanding of its applications and highlighting potential advantages. The review begins with an overview of liposomal formulations and their role in targeted drug delivery. It then systematically progresses through current research on ML in this area, discussing the principles guiding ML adaptation for liposomal preparation and characterization. Additionally, the review proposes a conceptual model for effective ML incorporation. The review explores popular ML techniques, including ensemble learning, decision trees, instance- based learning, and neural networks. It discusses feature extraction and selection, emphasizing the influence of dataset nature and ML method choice on technique relevance. The review underscores the importance of supervised learning models for structured liposomal formulations, where labeled data is essential. It acknowledges the merits of K-fold cross-validation but notes the prevalent use of single train/test splits in liposomal formulation studies. This practice facilitates the visualization of results through 3D plots for practical interpretation. While highlighting the mean absolute error as a crucial metric, the review emphasizes consistency between predicted and actual values. It clearly demonstrates ML techniques' effectiveness in optimizing critical formulation parameters such as encapsulation efficiency, particle size, drug loading efficiency, polydispersity index, and liposomal flux. In conclusion, the review navigates the nuances of various ML algorithms, illustrating ML's role as a decision support system for liposomal formulation development. It proposes a structured framework involving experimentation, physicochemical analysis, and iterative ML model refinement through human-centered evaluation, guiding future studies. Emphasizing meticulous experimentation, interdisciplinary collaboration, and continuous validation, the review advocates seamless ML integration into liposomal drug delivery research for robust advancements. Future endeavors are encouraged to uphold these principles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
Dr_Stars发布了新的文献求助10
1秒前
2秒前
2秒前
luyunxing完成签到,获得积分10
3秒前
xiazixiaojie完成签到,获得积分10
3秒前
烟花应助Tim采纳,获得10
3秒前
3秒前
斯文败类应助肖耶啵采纳,获得10
4秒前
Gong发布了新的文献求助10
4秒前
酥糖茶茶完成签到,获得积分10
4秒前
生动亚男发布了新的文献求助10
4秒前
5秒前
pomelo完成签到 ,获得积分10
5秒前
科研通AI5应助素素采纳,获得20
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
Elio完成签到,获得积分10
7秒前
7秒前
科研狗发布了新的文献求助10
8秒前
lewis完成签到,获得积分10
8秒前
珠珠崽子完成签到 ,获得积分10
8秒前
9秒前
梦梦发布了新的文献求助10
9秒前
文都哲完成签到,获得积分20
9秒前
勤恳冰彤完成签到 ,获得积分10
9秒前
LilyChen应助中级奥术师采纳,获得30
10秒前
10秒前
听寒完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868