残留物(化学)
乙醇胺
甘露糖
生物化学
化学
磷酸盐
6-磷酸甘露糖
糖脂
受体
生长因子
作者
Saulius Vainauskas,Anant K. Menon
标识
DOI:10.1074/jbc.m608896200
摘要
Glycosylphosphatidylinositol (GPI) anchoring of proteins is catalyzed by GPI transamidase (GPIT), a multisubunit, endoplasmic reticulum (ER)-localized enzyme. GPIT recognizes ER-translocated proteins that have a GPI-directing C-terminal signal sequence and replaces this sequence with a preassembled GPI anchor. Although the GPI signal sequence has been extensively characterized, little is known about the structural features of the GPI lipid substrate that enable its recognition by GPIT. In a previous study we showed that mature GPIs could be co-immunoprecipitated with GPIT complexes containing functional subunits (Vainauskas, S., and Menon, A. K. (2004) J. Biol. Chem. 279, 6540-6545). We now use this approach, as well as a method that reconstitutes the interaction between GPIs and GPIT, to define the basis of the interaction between GPI and human GPIT. We report that (i) human GPIT can interact with GPI biosynthetic intermediates, not just mature GPIs competent for transfer to protein, (ii) the ethanolamine phosphate group on the third mannose residue of the GPI glycan is not critical for GPI recognition by GPIT, (iii) the ethanolamine phosphate residue linked to the first mannose of the GPI structure is a major feature of GPIs that is recognized by human GPIT, and (iv) the simplest GPI recognized by human GPIT is EtN-P-2Manalpha1-4GlcN-(acyl)-phosphatidyl-inositol. These studies define the molecular characteristics of GPI that are recognized by GPIT and open the way to identifying GPIT subunits that are involved in this process.
科研通智能强力驱动
Strongly Powered by AbleSci AI