参数统计
控制理论(社会学)
背景(考古学)
李雅普诺夫函数
仿射变换
自适应控制
二次方程
计算机科学
趋同(经济学)
理论(学习稳定性)
法学
数学
数学优化
非线性系统
控制(管理)
统计
人工智能
纯数学
经济
几何学
古生物学
物理
机器学习
政治学
生物
量子力学
经济增长
作者
Mitchell Black,Ehsan Arabi,Dimitra Panagou
标识
DOI:10.23919/ecc54610.2021.9655080
摘要
We present a novel technique for solving the problem of safe control for a general class of nonlinear, control-affine systems subject to parametric model uncertainty. Invoking Lyapunov analysis and the notion of fixed-time stability (FxTS), we introduce a parameter adaptation law which guarantees convergence of the estimates of unknown parameters in the system dynamics to their true values within a fixed-time independent of the initial parameter estimation error. We then synthesize the adaptation law with a robust, adaptive control barrier function (RaCBF) based quadratic program to compute safe control inputs despite the considered model uncertainty. To corroborate our results, we undertake a comparative case study on the efficacy of this result versus other recent approaches in the literature to safe control under uncertainty, and close by highlighting the value of our method in the context of an automobile overtake scenario.
科研通智能强力驱动
Strongly Powered by AbleSci AI