Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach

医学 卷积神经网络 接收机工作特性 断裂(地质) 股骨 模式识别(心理学) 人工智能 精确性和召回率 科恩卡帕 F1得分 深度学习 人工神经网络 计算机科学 机器学习 外科 内科学 工程类 岩土工程
作者
Leonardo Tanzi,Enrico Vezzetti,Rodrigo Moreno,Alessandro Aprato,Andrea Audisio,Alessandro Massè
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:133: 109373-109373 被引量:91
标识
DOI:10.1016/j.ejrad.2020.109373
摘要

Purpose Suspected fractures are among the most common reasons for patients to visit emergency departments and often can be difficult to detect and analyze them on film scans. Therefore, we aimed to design a Deep Learning-based tool able to help doctors in diagnosis of bone fractures, following the hierarchical classification proposed by the Arbeitsgemeinschaft für Osteosynthesefragen (AO) Foundation and the Orthopaedic Trauma Association (OTA). Methods 2453 manually annotated images of proximal femur were used for the classification in different fracture types (1133 Unbroken femur, 570 type A, 750 type B). Secondly, the A type fractures were further classified into the types A1, A2, A3. Two approaches were implemented: the first is a fine-tuned InceptionV3 convolutional neural network (CNN), used as a baseline for our own proposed approach; the second is a multistage architecture composed by successive CNNs in cascade, perfectly suited to the hierarchical structure of the AO/OTA classification. Gradient Class Activation Maps (Grad-CAM) where used to visualize the most relevant areas of the images for classification. The averaged ability of the CNN was measured with accuracy, area under receiver operating characteristics curve (AUC), recall, precision and F1-score. The averaged ability of the orthopedists with and without the help of the CNN was measured with accuracy and Cohen’s Kappa coefficient. Results We obtained an averaged accuracy of 0.86 (CI 0.84−0.88) for three classes classification and 0.81 (CI 0.79−0.82) for five classes classification. The average accuracy improvement of specialists was 14 % with and without the CAD (Computer Assisted Diagnosis) system. Conclusion We showed the potential of using a CAD system based on CNN for improving diagnosis accuracy and for helping students with a lower level of expertise. We started our work with proximal femur fractures and we aim to extend it to all bone segments further in the future, in order to implement a tool that could be used in every-day hospital routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助MaRin采纳,获得10
刚刚
SciGPT应助111采纳,获得10
1秒前
杨自强完成签到,获得积分10
1秒前
1秒前
hhxhhx完成签到,获得积分20
3秒前
xiaowang发布了新的文献求助10
5秒前
6秒前
祁灵枫发布了新的文献求助10
6秒前
江江小菜鸡完成签到,获得积分10
6秒前
NSS发布了新的文献求助10
7秒前
7秒前
Vic发布了新的文献求助10
8秒前
mumu完成签到 ,获得积分10
8秒前
赘婿应助微光熠采纳,获得10
8秒前
孙友浩发布了新的文献求助10
9秒前
Owen应助xiaowang采纳,获得10
10秒前
10秒前
大模型应助江江小菜鸡采纳,获得10
10秒前
11秒前
lyx发布了新的文献求助10
11秒前
11秒前
隐形曼青应助hhxhhx采纳,获得10
11秒前
sleeping发布了新的文献求助10
11秒前
zzk完成签到,获得积分10
12秒前
blue2021发布了新的文献求助30
13秒前
13秒前
zhu完成签到,获得积分10
14秒前
giserone发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
科研通AI6应助狂野的山菡采纳,获得20
16秒前
16秒前
16秒前
叶问夏发布了新的文献求助10
16秒前
斗罗大陆完成签到,获得积分10
16秒前
火山发布了新的文献求助10
17秒前
AXLL发布了新的文献求助10
17秒前
wenqin发布了新的文献求助20
18秒前
JamesPei应助suyk采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076