材料科学
成核
原子层沉积
微观结构
电镀(地质)
钝化
法拉第效率
化学工程
电解质
图层(电子)
箔法
金属
铜
锂(药物)
合金
纳米技术
冶金
电极
复合材料
化学
物理化学
内分泌学
有机化学
工程类
地质学
医学
地球物理学
作者
Solomon T. Oyakhire,William Huang,Hansen Wang,David Boyle,Joel R. Schneider,Camila de Paula,Yecun Wu,Yi Cui,Stacey F. Bent
标识
DOI:10.1002/aenm.202002736
摘要
Abstract The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO 2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO 2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO 2 , a Li x TiO 2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO 2 ), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm −2 . This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.
科研通智能强力驱动
Strongly Powered by AbleSci AI