亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical deep learning—A systematic meta-review

深度学习 人工智能 计算机科学 领域(数学) 数据科学 机器学习 大数据 数据挖掘 数学 纯数学
作者
Jan Egger,Christina Gsaxner,Antonio Pepe,Kelsey L. Pomykala,Frederic Jonske,Manuel Kurz,Jianning Li,Jens Kleesiek
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106874-106874 被引量:142
标识
DOI:10.1016/j.cmpb.2022.106874
摘要

Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edge methods. Additionally, deep learning has delivered state-of-the-art results in tasks like autonomous driving, outclassing previous attempts. There are even instances where deep learning outperformed humans, for example with object recognition and gaming. Deep learning is also showing vast potential in the medical domain. With the collection of large quantities of patient records and data, and a trend towards personalized treatments, there is a great need for automated and reliable processing and analysis of health information. Patient data is not only collected in clinical centers, like hospitals and private practices, but also by mobile healthcare apps or online websites. The abundance of collected patient data and the recent growth in the deep learning field has resulted in a large increase in research efforts. In Q2/2020, the search engine PubMed returned already over 11,000 results for the search term ‘deep learning’, and around 90% of these publications are from the last three years. However, even though PubMed represents the largest search engine in the medical field, it does not cover all medical-related publications. Hence, a complete overview of the field of ‘medical deep learning’ is almost impossible to obtain and acquiring a full overview of medical sub-fields is becoming increasingly more difficult. Nevertheless, several review and survey articles about medical deep learning have been published within the last few years. They focus, in general, on specific medical scenarios, like the analysis of medical images containing specific pathologies. With these surveys as a foundation, the aim of this article is to provide the first high-level, systematic meta-review of medical deep learning surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
心空完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
Shuo关注了科研通微信公众号
18秒前
白云发布了新的文献求助200
36秒前
48秒前
量子星尘发布了新的文献求助10
49秒前
51秒前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
满意的伊完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Frank应助椒盐柠檬茶采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Orange应助123采纳,获得10
3分钟前
打打应助文学痞采纳,获得10
3分钟前
3分钟前
文学痞发布了新的文献求助10
4分钟前
Fangyu完成签到,获得积分10
4分钟前
科研通AI5应助wang采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
sunnn完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
suxili完成签到 ,获得积分10
4分钟前
4分钟前
wang发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885807
求助须知:如何正确求助?哪些是违规求助? 3427865
关于积分的说明 10757116
捐赠科研通 3152724
什么是DOI,文献DOI怎么找? 1740596
邀请新用户注册赠送积分活动 840305
科研通“疑难数据库(出版商)”最低求助积分说明 785302