U2Fusion: A Unified Unsupervised Image Fusion Network.

模式识别(心理学) 图像(数学) 融合 计算机视觉 图像分割 特征(语言学) 聚类分析 卷积神经网络
作者
Han Xu,Jiayi Ma,Junjun Jiang,Xiaojie Guo,Haibin Ling
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:85
标识
DOI:10.1109/tpami.2020.3012548
摘要

This study proposes a novel unified and unsupervised end-to-end image fusion network, termed as U2Fusion, which is capable of solving different fusion problems, including multi-modal, multi-exposure, and multi-focus cases. Using feature extraction and information measurement, U2Fusion automatically estimates the importance of corresponding source images and comes up with adaptive information preservation degrees. Hence, different fusion tasks are unified in the same framework. Based on the adaptive degrees, a network is trained to preserve the adaptive similarity between the fusion result and source images. Therefore, the stumbling blocks in applying deep learning for image fusion, e.g., the requirement of ground-truth and specifically designed metrics, are greatly mitigated. By avoiding the loss of previous fusion capabilities when training a single model for different tasks sequentially, we obtain a unified model that is applicable to multiple fusion tasks. Moreover, a new aligned infrared and visible image dataset, RoadScene (available at https://github.com/hanna-xu/RoadScene), is released to provide a new option for benchmark evaluation. Qualitative and quantitative experimental results on three typical image fusion tasks validate the effectiveness and universality of U2Fusion. Our code is publicly available at https://github.com/hanna-xu/U2Fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助LONG采纳,获得10
刚刚
刚刚
内秀发布了新的文献求助10
1秒前
乐乐应助晴天采纳,获得10
1秒前
Murphy~完成签到,获得积分10
1秒前
科学界的泰斗完成签到,获得积分10
2秒前
荧123456发布了新的文献求助10
2秒前
Jasper应助ZXDDDD采纳,获得10
2秒前
3秒前
优雅的秋尽完成签到,获得积分10
4秒前
666完成签到,获得积分10
5秒前
5秒前
gogoyoco发布了新的文献求助10
5秒前
melody发布了新的文献求助10
6秒前
6秒前
一一发布了新的文献求助10
7秒前
7秒前
牛肉面发布了新的文献求助10
8秒前
深情安青应助荧123456采纳,获得10
8秒前
CipherSage应助hu采纳,获得10
8秒前
bkagyin应助Timezzz采纳,获得10
8秒前
顾矜应助juzipi采纳,获得10
8秒前
8秒前
共享精神应助gogoyoco采纳,获得10
9秒前
清爽的傲易完成签到 ,获得积分10
9秒前
这篇文献真好完成签到,获得积分10
9秒前
打打应助云上人采纳,获得10
9秒前
Akim应助安安采纳,获得10
10秒前
舒服的曼云完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
geokk发布了新的文献求助30
12秒前
13秒前
14秒前
科研dog发布了新的文献求助10
15秒前
共产主义接班人完成签到,获得积分10
15秒前
15秒前
虚心的小兔子完成签到,获得积分10
15秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203