亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review

患者安全 临床决策支持系统 人工智能 系统回顾 梅德林 机器学习 决策树 计算机科学 医学 决策支持系统 医疗保健 政治学 经济增长 经济 法学
作者
Avishek Choudhury,Onur Asan
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:8 (7): e18599-e18599 被引量:252
标识
DOI:10.2196/18599
摘要

Background Artificial intelligence (AI) provides opportunities to identify the health risks of patients and thus influence patient safety outcomes. Objective The purpose of this systematic literature review was to identify and analyze quantitative studies utilizing or integrating AI to address and report clinical-level patient safety outcomes. Methods We restricted our search to the PubMed, PubMed Central, and Web of Science databases to retrieve research articles published in English between January 2009 and August 2019. We focused on quantitative studies that reported positive, negative, or intermediate changes in patient safety outcomes using AI apps, specifically those based on machine-learning algorithms and natural language processing. Quantitative studies reporting only AI performance but not its influence on patient safety outcomes were excluded from further review. Results We identified 53 eligible studies, which were summarized concerning their patient safety subcategories, the most frequently used AI, and reported performance metrics. Recognized safety subcategories were clinical alarms (n=9; mainly based on decision tree models), clinical reports (n=21; based on support vector machine models), and drug safety (n=23; mainly based on decision tree models). Analysis of these 53 studies also identified two essential findings: (1) the lack of a standardized benchmark and (2) heterogeneity in AI reporting. Conclusions This systematic review indicates that AI-enabled decision support systems, when implemented correctly, can aid in enhancing patient safety by improving error detection, patient stratification, and drug management. Future work is still needed for robust validation of these systems in prospective and real-world clinical environments to understand how well AI can predict safety outcomes in health care settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
29秒前
自行车发布了新的文献求助10
32秒前
35秒前
华仔应助kaio_escolar采纳,获得10
36秒前
追寻奄发布了新的文献求助10
40秒前
caca完成签到,获得积分0
52秒前
QiongYin_123完成签到 ,获得积分10
54秒前
科研通AI5应助Cecilia采纳,获得10
54秒前
1分钟前
爆米花应助大号采纳,获得10
1分钟前
Cecilia发布了新的文献求助10
1分钟前
烟花应助Estrange采纳,获得10
1分钟前
1分钟前
WZQ完成签到,获得积分10
1分钟前
大号完成签到,获得积分20
1分钟前
大号发布了新的文献求助10
1分钟前
1分钟前
个性归尘给芒夏的求助进行了留言
2分钟前
Estrange发布了新的文献求助10
2分钟前
在水一方应助Estrange采纳,获得10
2分钟前
wanci应助Lee采纳,获得10
2分钟前
2分钟前
2分钟前
自行车完成签到,获得积分10
2分钟前
zhj完成签到,获得积分20
2分钟前
ylky完成签到 ,获得积分10
4分钟前
4分钟前
聂白晴发布了新的文献求助10
4分钟前
W29完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Cosmosurfer完成签到,获得积分10
5分钟前
小程同学发布了新的文献求助10
5分钟前
Lee发布了新的文献求助10
5分钟前
传奇3应助马帅帅采纳,获得10
5分钟前
Lee完成签到,获得积分10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456499
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251