Fouling modeling and prediction approach for heat exchangers using deep learning

结垢 热交换器 计算机科学 稳健性(进化) 可扩展性 人工神经网络 机器学习 人工智能 烟气 工艺工程 机械工程 工程类 废物管理 基因 生物 数据库 生物化学 遗传学 化学
作者
Sreenath Sundar,Manjunath C. Rajagopal,Hanyang Zhao,Gowtham Kuntumalla,Yuquan Meng,Ho Chan Chang,Chenhui Shao,Placid Ferreira,Nenad Miljkovic,Sanjiv Sinha,Srinivasa M. Salapaka
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:159: 120112-120112 被引量:56
标识
DOI:10.1016/j.ijheatmasstransfer.2020.120112
摘要

In this article, we develop a generalized and scalable statistical model for accurate prediction of fouling resistance using commonly measured parameters of industrial heat exchangers. This prediction model is based on deep learning where a scalable algorithmic architecture learns non-linear functional relationships between a set of target and predictor variables from large number of training samples. The efficacy of this modeling approach is demonstrated for predicting fouling in an analytically modeled cross-flow heat exchanger, designed for waste heat recovery from flue-gas using room temperature water. The performance results of the trained models demonstrate that the mean absolute prediction errors are under 10−4KW−1 for flue-gas side, water side and overall fouling resistances. The coefficients of determination (R2), which characterize the goodness of fit between the predictions and observed data, are over 99%. Even under varying levels of measurement noise in the inputs, we demonstrate that predictions over an ensemble of multiple neural networks achieves better accuracy and robustness to noise. We find that the proposed deep-learning fouling prediction framework learns to follow heat exchanger flow and heat transfer physics, which we confirm using locally interpretable model agnostic explanations around randomly selected operating points. Overall, we provide a robust algorithmic framework for fouling prediction that can be generalized and scaled to various types of industrial heat exchangers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
99完成签到,获得积分10
1秒前
祁闲蒽发布了新的文献求助20
3秒前
花开富贵完成签到,获得积分10
4秒前
wanci应助研友_8YKe5n采纳,获得10
4秒前
科研通AI5应助111采纳,获得10
4秒前
7秒前
lcj完成签到,获得积分10
10秒前
四福祥发布了新的文献求助10
12秒前
希拉里罗德姆完成签到 ,获得积分10
15秒前
xx完成签到,获得积分10
15秒前
沉静的浩然完成签到,获得积分10
15秒前
20秒前
阳佟冬卉完成签到,获得积分10
22秒前
Rue完成签到,获得积分10
23秒前
osel发布了新的文献求助30
23秒前
lewu完成签到 ,获得积分10
25秒前
holi完成签到 ,获得积分10
25秒前
27秒前
Hello应助pan采纳,获得10
27秒前
slb1319完成签到,获得积分10
29秒前
xxh完成签到,获得积分10
29秒前
畅快代柔完成签到 ,获得积分10
30秒前
钟婷婷发布了新的文献求助30
30秒前
littleyiiiii完成签到,获得积分10
32秒前
舒克完成签到,获得积分10
32秒前
orixero应助Raine采纳,获得10
33秒前
33秒前
李爱国应助xxx采纳,获得10
33秒前
微笑的靖易完成签到,获得积分10
35秒前
35秒前
宝福X暴富完成签到,获得积分10
36秒前
斯人如机完成签到 ,获得积分10
36秒前
Akim应助呆萌芙蓉采纳,获得10
37秒前
liming完成签到,获得积分20
39秒前
39秒前
40秒前
41秒前
小二郎应助北风语采纳,获得10
41秒前
Azhou完成签到,获得积分10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320