催化作用
铜
X射线光电子能谱
材料科学
密度泛函理论
法拉第效率
蚀刻(微加工)
X射线吸收光谱法
Atom(片上系统)
相(物质)
吸收光谱法
结晶学
无机化学
分析化学(期刊)
化学
物理化学
电化学
化学工程
纳米技术
计算化学
冶金
电极
物理
嵌入式系统
量子力学
有机化学
色谱法
生物化学
工程类
图层(电子)
计算机科学
作者
Qi Zhao,Chao Zhang,Riming Hu,Zhiguo Du,Jianan Gu,Yanglansen Cui,Xiao Chen,Wenjie Xu,Zongju Cheng,Songmei Li,Bin Li,Yuefeng Liu,Weihua Chen,Chuntai Liu,Jiaxiang Shang,Li Song,Shubin Yang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-02-22
卷期号:15 (3): 4927-4936
被引量:203
标识
DOI:10.1021/acsnano.0c09755
摘要
Single atom catalysts possess attractive electrocatalytic activities for various chemical reactions owing to their favorable geometric and electronic structures compared to the bulk counterparts. Herein, we demonstrate an efficient approach to producing single atom copper immobilized MXene for electrocatalytic CO2 reduction to methanol via selective etching of hybrid A layers (Al and Cu) in quaternary MAX phases (Ti3(Al1–xCux)C2) due to the different saturated vapor pressures of Al- and Cu-containing products. After selective etching of Al in the hybrid A layers, Cu atoms are well-preserved and simultaneously immobilized onto the resultant MXene with dominant surface functional group (Clx) on the outmost Ti layers (denoted as Ti3C2Clx) via Cu–O bonds. Consequently, the as-prepared single atom Cu catalyst exhibits a high Faradaic efficiency value of 59.1% to produce CH3OH and shows good electrocatalytic stability. On the basis of synchrotron-based X-ray absorption spectroscopy analysis and density functional theory calculations, the single atom Cu with unsaturated electronic structure (Cuδ+, 0 < δ < 2) delivers a low energy barrier for the rate-determining step (conversion of HCOOH* to absorbed CHO* intermediate), which is responsible for the efficient electrocatalytic CO2 reduction to CH3OH.
科研通智能强力驱动
Strongly Powered by AbleSci AI