Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps

自编码 人工智能 模式识别(心理学) 图形 计算机科学 编码(社会科学) 卷积神经网络 理论计算机科学 深度学习 数学 统计
作者
Xiongfeng Yan,Tinghua Ai,Min Yang,Xiaohua Tong
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:35 (3): 490-512 被引量:83
标识
DOI:10.1080/13658816.2020.1768260
摘要

The shape of a geospatial object is an important characteristic and a significant factor in spatial cognition. Existing shape representation methods for vector-structured objects in the map space are mainly based on geometric and statistical measures. Considering that shape is complicated and cognitively related, this study develops a learning strategy to combine multiple features extracted from its boundary and obtain a reasonable shape representation. Taking building data as example, this study first models the shape of a building using a graph structure and extracts multiple features for each vertex based on the local and regional structures. A graph convolutional autoencoder (GCAE) model comprising graph convolution and autoencoder architecture is proposed to analyze the modeled graph and realize shape coding through unsupervised learning. Experiments show that the GCAE model can produce a cognitively compliant shape coding, with the ability to distinguish different shapes. It outperforms existing methods in terms of similarity measurements. Furthermore, the shape coding is experimentally proven to be effective in representing the local and global characteristics of building shape in application scenarios such as shape retrieval and matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助平常心采纳,获得10
1秒前
xty发布了新的文献求助20
1秒前
1秒前
AAA电池批发顾总完成签到,获得积分10
2秒前
Rage_Wang发布了新的文献求助30
3秒前
howay发布了新的文献求助20
4秒前
7秒前
小白不白完成签到,获得积分10
8秒前
罗婕完成签到,获得积分10
9秒前
9秒前
袁某完成签到,获得积分10
9秒前
9秒前
10秒前
踏实的傲白完成签到 ,获得积分10
10秒前
万能图书馆应助墨倾池采纳,获得10
11秒前
11秒前
12秒前
12秒前
情怀应助qq781208654采纳,获得10
12秒前
jerry完成签到,获得积分10
12秒前
Orange应助jason93采纳,获得30
14秒前
强健的梦蕊完成签到 ,获得积分10
14秒前
甄的艾你发布了新的文献求助10
14秒前
14秒前
15秒前
李浩发布了新的文献求助30
15秒前
15秒前
稳重发布了新的文献求助10
15秒前
瑞瑞刘完成签到 ,获得积分10
16秒前
袁某发布了新的文献求助10
16秒前
CodeCraft应助小洲冲冲冲采纳,获得10
17秒前
17秒前
烟花应助雪山飞虹采纳,获得10
19秒前
19秒前
ccerr发布了新的文献求助10
20秒前
香蕉梨愁完成签到 ,获得积分10
20秒前
howay完成签到,获得积分10
21秒前
墨倾池发布了新的文献求助10
21秒前
酷酷冰绿发布了新的文献求助30
22秒前
科研通AI5应助chenmeng采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608