清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Liver Cancer Detection Using Hybridized Fully Convolutional Neural Network Based on Deep Learning Framework

计算机科学 卷积神经网络 深度学习 人工智能 癌症 癌症检测 机器学习 模式识别(心理学) 医学 内科学
作者
Xin Dong,Yizhao Zhou,Lantian Wang,Jingfeng Peng,Yanbo Lou,Yiqun Fan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 129889-129898 被引量:84
标识
DOI:10.1109/access.2020.3006362
摘要

Liver cancer is one of the world's largest causes of death to humans. It is a difficult task and time consuming to identify the cancer tissue manually in the present scenario. The segmentation of liver lesions in CT images can be used to assess the tumor load, plan treatments predict, and monitor the clinical response. In this paper, the Hybridized Fully Convolutional Neural Network (HFCNN) has been proposed for liver tumor segmentation, which has been modeled mathematically to resolve the current issue of liver cancer. For semantic segmentation, HFCNN has been used as a powerful tool for liver cancer analysis. Whereas the CT-based lesion-type definition defines the diagnosis and therapeutic strategy, the distinction between cancer and non-cancer lesions is crucial. It demands highly qualified experience, expertise, and resources. However, a deep end-to-end learning approach to help discrimination in abdominal CT images of the liver between liver metastases of colorectal cancer and benign cysts has been analyzed. Our method includes the successful extraction of features from Inception combined with residual and pre-trained weights. Feature maps have been consistent with the original image voxel features, and The importance of features seemed to represent the most relevant imaging criteria for every class. This deep learning system shows the concept of illumination portions of the decision-making process of a pre-trained deep neural network, through an analysis of inner layers and the description of features that lead to predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sue完成签到 ,获得积分10
7秒前
小西完成签到 ,获得积分10
11秒前
HH1202完成签到 ,获得积分10
14秒前
研友_nxw2xL完成签到,获得积分10
45秒前
muriel完成签到,获得积分10
53秒前
今后应助科研通管家采纳,获得10
54秒前
通科研完成签到 ,获得积分10
57秒前
科研通AI5应助budingman采纳,获得10
1分钟前
1分钟前
斯文的难破完成签到 ,获得积分10
1分钟前
一定能考上研究生完成签到,获得积分20
1分钟前
naczx完成签到,获得积分0
1分钟前
2分钟前
budingman发布了新的文献求助10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
foyefeng完成签到 ,获得积分10
3分钟前
zzhui完成签到,获得积分10
3分钟前
火星人完成签到 ,获得积分10
4分钟前
纪鹏飞完成签到,获得积分10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得80
4分钟前
5分钟前
烟花应助大胆的茗茗采纳,获得10
5分钟前
CH完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
光合作用完成签到,获得积分10
6分钟前
6分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
Hans完成签到,获得积分10
7分钟前
mc发布了新的文献求助10
7分钟前
Akim应助budingman采纳,获得10
8分钟前
轩辕中蓝完成签到 ,获得积分10
8分钟前
9分钟前
烟消云散发布了新的文献求助10
9分钟前
CC完成签到,获得积分0
9分钟前
方白秋完成签到,获得积分10
9分钟前
9分钟前
budingman发布了新的文献求助10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468