亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-Platinum Group Catalysts to Improve Performance of a Membraneless Microbial Fuel Cell

微生物燃料电池 阳极 催化作用 阴极 气体扩散电极 功率密度 化学工程 废物管理 材料科学 化学 电极 电化学 有机化学 工程类 功率(物理) 量子力学 物理 物理化学
作者
Clifford S. Swanson,Yasser Ashraf Gandomi,Gabriel A. Goenaga,Samantha Medina,Thomas A. Zawodzinski,Douglas Aaron,Matthew M. Mench
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (38): 2257-2257
标识
DOI:10.1149/ma2018-01/38/2257
摘要

Over the last couple decades, microbial fuel cells (MFCs) have become a technology of interest for renewable energy production and waste treatment/reclamation. MFCs are flexible with fuel and, for this reason, have garnered interest as biosensors, unit operations in advanced wastewater treatment, and alternative power sources. MFCs oxidize organic matter at the anode where microbes perform anaerobic respiration to convert organic matter into simpler compounds (such as carbon dioxide, methane, etc.); however, the anode electrode serves as the final electron acceptor [1, 2]. The electrons produced at the anode are used at the cathode in oxygen reduction reaction (ORR), a reaction that requires the presence of a catalyst. The system design for MFCs can vary to meet different applications [3], but one of the more popular designs is a membrane less, single chamber, air cathode microbial fuel cell [4], which has the anode submerged in an oxygen-less, nutrient solution and has an air-exposed cathode. Although promising in concept, MFCs have very low power density, making them cost inefficient. A major performance limitation in MFCs has been identified in the cathode. Overall efficiency and power density a strongly influenced by cathode design and catalyst selection for the ORR [4, 5]. Previous modeling efforts have suggested oxygen crossover to the anode, oxygen diffusion to the ORR catalyst, and the catalyst used are major factors for low power density [6-8]. In this work, improved MFC performance is demonstrated using non-platinum group catalyst material. The novel catalyst was benchmarked against a platinum group catalyst. Using the novel non-platinum catalyst results in a modest increase in open circuit potential, and a significant increase in maximum current density and power density. In addition, we have investigated the influence of non-platinum catalyst loading on the overall performance. The novel catalysts used in this work demonstrated stability over months of operation. This suggests that the non-platinum group catalyst used in this work is more efficient than platinum group catalyst, improving the cell performance while simultaneously enabling lower cost. References Jr, L.B.W., C.H. Shaw, and J.F. Castner, Bioelectrochemical fuel cells. Enzyme and Microbial Technology, 1982. 4 (3): p. 6. Kim, H.J., et al., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 2002. 30 (2): p. 8. He, Z., S.D. Minteer, and L.T. Angenent, Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environmental Science and Technology, 2006. 39 : p. 6. Liu, H. and B.E. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science and Technology, 2004. 38 : p. 6. Rismani-Yazdi, H., et al., Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources, 2008. 180 : p. 12. Ou, S., et al., Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell. Journal of Power Sources, 2017. 347 : p. 11. Ou, S., et al., Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition. Journal of Power Sources, 2016. 328 : p. 12. Ou, S., et al., Multi-variable mathematical models for the air-cathode microbial fuel cell system. Journal of Power Sources, 2016. 314 : p. 9. Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chany关注了科研通微信公众号
9秒前
科研通AI5应助ploutya采纳,获得10
18秒前
dd完成签到 ,获得积分10
19秒前
20秒前
25秒前
25秒前
29秒前
研友_VZG7GZ应助dahafei采纳,获得10
29秒前
Chany发布了新的文献求助10
31秒前
SciGPT应助百丈楼阁情悫悫采纳,获得10
47秒前
mangle完成签到,获得积分10
51秒前
55秒前
1分钟前
麻辣小龙虾完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
dahafei发布了新的文献求助10
1分钟前
1分钟前
檸123456完成签到,获得积分10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
无限的马里奥完成签到,获得积分10
1分钟前
sunflowers完成签到 ,获得积分10
1分钟前
1分钟前
过氧化氢应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
知性的剑身完成签到,获得积分10
1分钟前
1分钟前
yuewenchen完成签到,获得积分10
2分钟前
2分钟前
生如夏花完成签到 ,获得积分10
2分钟前
2分钟前
酷波er应助XH采纳,获得10
2分钟前
没烦恼发布了新的文献求助10
2分钟前
2分钟前
2分钟前
CipherSage应助胞嘧啶jane采纳,获得10
2分钟前
eric888应助朴素沛山采纳,获得30
2分钟前
摆烂的实验室打工人完成签到,获得积分10
2分钟前
Luo完成签到,获得积分10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561358
捐赠科研通 3110626
什么是DOI,文献DOI怎么找? 1714425
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775390