活力测定
材料科学
形态学(生物学)
多孔性
细胞
情感(语言学)
纳米技术
生物物理学
细胞生物学
生物医学工程
化学工程
复合材料
医学
化学
生物
工程类
心理学
生物化学
遗传学
沟通
作者
Jianhua Zhang,Esther Wehrle,Jolanda R. Vetsch,Graeme R. Paul,Marina Rubert,Ralph Müller
标识
DOI:10.1088/1748-605x/ab3c74
摘要
Three-dimensional (3D) cell-laden scaffolds are becoming more prevalent in bone tissue repair and regeneration. However, the influence of physical scaffold properties on cell behavior is still unclear. In this study, we fabricated four different alginate concentration (0.8, 1.3, 1.8 and 2.3%alg) composite cell-laden porous scaffolds using a 3D bioprinting technique. The aim was to investigate the changes of physical properties affected by the alginate concentration and the influences on cell behavior. The study showed that the different alginate concentration scaffolds had uniform macropores (500–600 μm) with compressive moduli ranging from 1.5 kPa (0.8%alg) to 14.2 kPa (2.3%alg). Long-term structural integrity of the printed scaffolds was achieved when cultured in cell culture media, but not when cultured in phosphate buffered saline (PBS). Scaffold structure, swelling behavior, and compressive moduli decreased with culturing time and higher alginate concentration lead to more stable physical scaffold properties. Meanwhile, human mesenchymal stem cell (hMSCs) laden non-printed and bioprinted composite scaffolds were fabricated. Bioprinting did not affect cell viability, but alginate concentration had a significant influence on cell viability and cell morphology. Lower alginate concentration scaffolds (0.8%alg) showed higher cell viability (84% ± 0.7% versus 68% ± 1.3%) compared to higher alginate concentration scaffolds (2.3%alg) at day 14. Live cell image in the 0.8%alg scaffolds demonstrated the formation of a 3D interconnected cellular network, while cells in the 1.8 and 2.3%alg scaffolds formed spheroids. In conclusion, this study broadens the design space for alginate-based bioinks for 3D bioprinting. Higher alginate concentration preserved better scaffold fidelity and mechanical properties. Better cell viability and cell spreading morphology was achieved in lower alginate concentration scaffolds, which is relevant for potential applications in bone tissue engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI