记忆电阻器
电铸
计算机科学
神经形态工程学
人工神经网络
期限(时间)
材料科学
纳米技术
神经科学
计算机体系结构
人工智能
电子工程
工程类
物理
图层(电子)
心理学
量子力学
作者
Yuqi Wang,Xinwei Li,Yihao Chen,Wei Xu,Dawei Liang,Fei Gao,Miaocheng Zhang,Subhranu Samanta,Xiao Gong,Xiaojuan Lian,Xiang Wan,Yi Tong
标识
DOI:10.7567/1882-0786/ab4233
摘要
Electronic synapses with both long-term and short-term plasticity are considered as significant components for constructing brain-inspired computing systems. Research progress on electrical synapses have proved that memristors possess huge similarities with biological synapses. Nevertheless, an effective mean of manipulating the biological properties of memristors is still unclear. In this letter, we propose a memristor and reveal that the compliance current of electroforming plays an active role in tuning short-term and long-term plasticity of the memristors. The results may provide a useful guideline for manipulating memristor as electronic synapses in the hardware implementation of artificial neural networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI