A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study

医学 人工智能 深度学习 算法 金标准(测试) 接收机工作特性 卷积神经网络 活检 癌症 放射科 机器学习 计算机科学 内科学
作者
Qiuyun Fu,Yehansen Chen,Zhihang Li,Qianyan Jing,Chuanyu Hu,Han Liu,Jiahao Bao,Yuming Hong,Ting Shi,LI Kai-xiong,Haixiao Zou,Yong Song,Hengkun Wang,Xiqian Wang,Yufan Wang,Jianying Liu,Hui Liu,Sulin Chen,Ruibin Chen,Man Zhang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:27: 100558-100558 被引量:168
标识
DOI:10.1016/j.eclinm.2020.100558
摘要

BackgroundThe overall prognosis of oral cancer remains poor because over half of patients are diagnosed at advanced-stages. Previously reported screening and earlier detection methods for oral cancer still largely rely on health workers' clinical experience and as yet there is no established method. We aimed to develop a rapid, non-invasive, cost-effective, and easy-to-use deep learning approach for identifying oral cavity squamous cell carcinoma (OCSCC) patients using photographic images.MethodsWe developed an automated deep learning algorithm using cascaded convolutional neural networks to detect OCSCC from photographic images. We included all biopsy-proven OCSCC photographs and normal controls of 44,409 clinical images collected from 11 hospitals around China between April 12, 2006, and Nov 25, 2019. We trained the algorithm on a randomly selected part of this dataset (development dataset) and used the rest for testing (internal validation dataset). Additionally, we curated an external validation dataset comprising clinical photographs from six representative journals in the field of dentistry and oral surgery. We also compared the performance of the algorithm with that of seven oral cancer specialists on a clinical validation dataset. We used the pathological reports as gold standard for OCSCC identification. We evaluated the algorithm performance on the internal, external, and clinical validation datasets by calculating the area under the receiver operating characteristic curves (AUCs), accuracy, sensitivity, and specificity with two-sided 95% CIs.Findings1469 intraoral photographic images were used to validate our approach. The deep learning algorithm achieved an AUC of 0·983 (95% CI 0·973–0·991), sensitivity of 94·9% (0·915–0·978), and specificity of 88·7% (0·845–0·926) on the internal validation dataset (n = 401), and an AUC of 0·935 (0·910–0·957), sensitivity of 89·6% (0·847–0·942) and specificity of 80·6% (0·757–0·853) on the external validation dataset (n = 402). For a secondary analysis on the internal validation dataset, the algorithm presented an AUC of 0·995 (0·988–0·999), sensitivity of 97·4% (0·932–1·000) and specificity of 93·5% (0·882–0·979) in detecting early-stage OCSCC. On the clinical validation dataset (n = 666), our algorithm achieved comparable performance to that of the average oral cancer expert in terms of accuracy (92·3% [0·902–0·943] vs 92.4% [0·912–0·936]), sensitivity (91·0% [0·879–0·941] vs 91·7% [0·898–0·934]), and specificity (93·5% [0·909–0·960] vs 93·1% [0·914–0·948]). The algorithm also achieved significantly better performance than that of the average medical student (accuracy of 87·0% [0·855–0·885], sensitivity of 83·1% [0·807–0·854], and specificity of 90·7% [0·889–0·924]) and the average non-medical student (accuracy of 77·2% [0·757–0·787], sensitivity of 76·6% [0·743–0·788], and specificity of 77·9% [0·759–0·797]).InterpretationAutomated detection of OCSCC by deep-learning-powered algorithm is a rapid, non-invasive, low-cost, and convenient method, which yielded comparable performance to that of human specialists and has the potential to be used as a clinical tool for fast screening, earlier detection, and therapeutic efficacy assessment of the cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
2秒前
yuchao_0110发布了新的文献求助10
2秒前
格兰德法泽尔完成签到,获得积分10
3秒前
Winner完成签到,获得积分10
7秒前
阿士大夫完成签到,获得积分10
15秒前
16秒前
drleslie完成签到 ,获得积分10
18秒前
22秒前
fangyifang完成签到,获得积分10
27秒前
S飞完成签到 ,获得积分0
28秒前
耸耸完成签到 ,获得积分10
29秒前
Jingyi发布了新的文献求助30
29秒前
文龙完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
jw完成签到,获得积分10
31秒前
孙刚完成签到 ,获得积分10
32秒前
Silence完成签到,获得积分0
34秒前
谢陈完成签到 ,获得积分10
35秒前
panpanliumin完成签到,获得积分0
39秒前
yaoyh_gc完成签到,获得积分10
41秒前
42秒前
zhanghan完成签到,获得积分10
55秒前
smmu008完成签到,获得积分10
56秒前
我想静静完成签到 ,获得积分10
57秒前
57秒前
Singularity应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
风清扬应助科研通管家采纳,获得10
59秒前
小马甲应助科研通管家采纳,获得20
59秒前
桐桐应助科研通管家采纳,获得10
59秒前
科研通AI5应助科研通管家采纳,获得10
59秒前
Singularity应助科研通管家采纳,获得10
59秒前
彭于彦祖应助科研通管家采纳,获得10
59秒前
今后应助科研通管家采纳,获得10
59秒前
Singularity应助科研通管家采纳,获得10
59秒前
量子星尘发布了新的文献求助10
1分钟前
sai完成签到,获得积分10
1分钟前
kobiy完成签到 ,获得积分10
1分钟前
偏翩完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883885
求助须知:如何正确求助?哪些是违规求助? 3426178
关于积分的说明 10747273
捐赠科研通 3151011
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734