亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Intelligent Fault Diagnosis Method Based on Variational Mode Decomposition and Ensemble Deep Belief Network

深信不疑网络 计算机科学 深度学习 人工智能 振动 方位(导航) 断层(地质) 光学(聚焦) 模式(计算机接口) 算法 模式识别(心理学) 操作系统 光学 物理 地质学 量子力学 地震学
作者
Chao Zhang,Yibin Zhang,Chenxi Hu,Zhenbao Liu,Liye Cheng,Yong Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 36293-36312 被引量:33
标识
DOI:10.1109/access.2020.2969412
摘要

The deep belief network is widely used in fault diagnosis and health management of rotating machinery. However, on the one hand, deep belief networks only tend to focus on the global information of bearing vibration, ignoring local information. On the other hand, the single deep belief network has limited learning ability and cannot diagnose the health of rotating machinery more accurately and stably. As a non-recursive variational signal decomposition method, variational mode decomposition can easily obtain local information of signals. And the ensemble deep belief network composed of multiple deep belief networks also improves the accuracy and stability of the health status diagnosis of rotating machinery. This paper combines the advantages of ensemble deep belief network and variational mode decomposition to propose a novel diagnostic method for rolling bearings. Firstly, the variational mode decomposition is used to decompose the vibration data of the rolling bearing into intrinsic mode functions with local information. Then, using the deep belief network based on cross-entropy to learn the intrinsic mode functions of the rolling bearing data and reconstruct the vibration data. Finally, In the decision-making layer, the improved combination strategy is used to process the health status information of the bearings obtained by multiple deep belief networks to obtain a more accurate and stable diagnosis result. This method is used to diagnose experimental bearing vibration data. The results show that the method can simultaneously focus on and learn the global and local information of bearing vibration data and overcome the limitations of individual deep learning models. Experiments show that it is more effective than the existing intelligent diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
23秒前
leinei发布了新的文献求助10
29秒前
32秒前
leinei完成签到,获得积分10
40秒前
42秒前
45秒前
53秒前
1分钟前
zxq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助xxsukixx采纳,获得10
1分钟前
1分钟前
xxsukixx发布了新的文献求助10
1分钟前
子车茗应助xxsukixx采纳,获得10
2分钟前
2分钟前
山与发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助环境催化采纳,获得10
3分钟前
Eden完成签到,获得积分10
3分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
帅气的熊猫完成签到,获得积分10
3分钟前
艳艳子完成签到,获得积分10
3分钟前
艳艳子发布了新的文献求助10
3分钟前
4分钟前
上官若男应助艳艳子采纳,获得10
4分钟前
环境催化发布了新的文献求助10
4分钟前
5分钟前
5分钟前
顾矜应助奖品肉麻膏耶采纳,获得10
5分钟前
5分钟前
5分钟前
艳艳子发布了新的文献求助10
5分钟前
5分钟前
leslie应助艳艳子采纳,获得30
5分钟前
顾矜应助liuyingjuan829采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
羽化成仙完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595751
求助须知:如何正确求助?哪些是违规求助? 4680986
关于积分的说明 14818222
捐赠科研通 4653243
什么是DOI,文献DOI怎么找? 2535669
邀请新用户注册赠送积分活动 1503553
关于科研通互助平台的介绍 1469767