Symptom Clusters Change Over Time in Patients With Lung Cancer During Perichemotherapy

医学 肺癌 化疗 癌症 心理干预 人口 内科学 探索性因素分析 星团(航天器) 肿瘤科 物理疗法 心理测量学 临床心理学 精神科 环境卫生 程序设计语言 计算机科学
作者
Nannan Li,Jing Wu,Jie Zhou,Caiqin Wu,Lu Dong,Wenjing Fan,Jinyu Zhang
出处
期刊:Cancer Nursing [Lippincott Williams & Wilkins]
卷期号:44 (4): 272-280 被引量:22
标识
DOI:10.1097/ncc.0000000000000787
摘要

Background Lung cancer has become the leading cause of cancer-related deaths in China, and patients often experience multiple symptoms and substantial discomfort. Understanding and managing concurrent symptoms of patients with lung cancer are crucial during perichemotherapy. Objective To determine the types and components of symptom clusters according to the severity dimension and to understand how they change over time during perichemotherapy in a homogeneous population of patients with lung cancer. Methods Patients were recruited using convenience sampling. The Chinese version of the MD Anderson Symptom Inventory and the revised lung cancer module were used to measure multiple symptoms at the following 3 separate points: 2 weeks before chemotherapy (T 1 ), chemotherapy cycle 1 (T 2 ), and chemotherapy cycle 4 (T 3 ). Symptom clusters were identified by exploratory factor analysis. Results A total of 144 patients with non–small cell lung cancer participated in the study. Six symptom clusters were identified at the 3 time points. Among the 6 symptom clusters, 3 symptom clusters remained stable at all time points, and differences were found in symptom clusters before and after chemotherapy. Conclusions Symptom clusters can change during perichemotherapy, showing some stability and differences over time. Implications for Practice An improved understanding of symptom cluster trajectories in patients with lung cancer may facilitate effective assessment, prevention, and management of multiple concurrent symptoms. These findings will help clinicians to develop predictive interventions and reduce the symptom burden of patients undergoing chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小蘑菇应助勤奋发卡采纳,获得10
2秒前
英姑应助xsy采纳,获得10
3秒前
3秒前
5秒前
zoudegui完成签到,获得积分10
5秒前
aldehyde应助tian采纳,获得10
5秒前
7秒前
lincool发布了新的文献求助10
7秒前
7秒前
Hello应助咯咚采纳,获得10
8秒前
plm发布了新的文献求助20
9秒前
9秒前
9秒前
9秒前
LL完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助Weiyu采纳,获得10
11秒前
13秒前
爆米花应助flysky120采纳,获得10
14秒前
李喜喜发布了新的文献求助10
14秒前
陌路发布了新的文献求助10
15秒前
15秒前
赵Zhao发布了新的文献求助10
15秒前
tinghua发布了新的文献求助10
15秒前
15秒前
16秒前
欧阳铭发布了新的文献求助10
16秒前
万能图书馆应助jueshadi采纳,获得10
16秒前
18秒前
大个应助caicai采纳,获得10
18秒前
18秒前
xx发布了新的文献求助10
19秒前
陌路完成签到,获得积分10
19秒前
研友_8RaVBZ完成签到,获得积分10
20秒前
20秒前
七七七发布了新的文献求助10
21秒前
橙子陈发布了新的文献求助10
21秒前
虚幻的莞完成签到,获得积分10
23秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830011
求助须知:如何正确求助?哪些是违规求助? 3372520
关于积分的说明 10473113
捐赠科研通 3092110
什么是DOI,文献DOI怎么找? 1701802
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986