FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

规范化(社会学) 计算机科学 特征(语言学) 原始数据 联合学习 人工神经网络 深层神经网络 趋同(经济学) 人工智能 独立同分布随机变量 编码(集合论) 深度学习 GSM演进的增强数据速率 机器学习 数据挖掘 数学 社会学 哲学 经济 集合(抽象数据类型) 程序设计语言 随机变量 统计 经济增长 语言学 人类学
作者
Xiaoxiao Li,Meirui Jiang,Xiaofei Zhang,Michael Kamp,Qi Dou
出处
期刊:Cornell University - arXiv 被引量:19
标识
DOI:10.48550/arxiv.2102.07623
摘要

The emerging paradigm of federated learning (FL) strives to enable collaborative training of deep models on the network edge without centrally aggregating raw data and hence improving data privacy. In most cases, the assumption of independent and identically distributed samples across local clients does not hold for federated learning setups. Under this setting, neural network training performance may vary significantly according to the data distribution and even hurt training convergence. Most of the previous work has focused on a difference in the distribution of labels or client shifts. Unlike those settings, we address an important problem of FL, e.g., different scanners/sensors in medical imaging, different scenery distribution in autonomous driving (highway vs. city), where local clients store examples with different distributions compared to other clients, which we denote as feature shift non-iid. In this work, we propose an effective method that uses local batch normalization to alleviate the feature shift before averaging models. The resulting scheme, called FedBN, outperforms both classical FedAvg, as well as the state-of-the-art for non-iid data (FedProx) on our extensive experiments. These empirical results are supported by a convergence analysis that shows in a simplified setting that FedBN has a faster convergence rate than FedAvg. Code is available at https://github.com/med-air/FedBN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mandy完成签到,获得积分10
1秒前
小邹完成签到,获得积分10
1秒前
FY完成签到 ,获得积分10
1秒前
香蕉觅云应助梧桐梅西采纳,获得10
1秒前
健壮的谷云完成签到,获得积分10
3秒前
3秒前
淼淼发布了新的文献求助10
3秒前
3秒前
4秒前
贾舒涵发布了新的文献求助10
4秒前
好好想想完成签到,获得积分20
7秒前
7秒前
赘婿应助super采纳,获得10
7秒前
8秒前
海绵宝宝发布了新的文献求助20
8秒前
tjj发布了新的文献求助10
9秒前
lvwwww应助Spine Lin采纳,获得10
9秒前
JamesPei应助酷酷夜阑采纳,获得10
10秒前
周沛沛完成签到,获得积分10
11秒前
上官若男应助好好想想采纳,获得10
12秒前
12秒前
15秒前
winjay完成签到 ,获得积分10
15秒前
NexusExplorer应助XWY采纳,获得10
16秒前
16秒前
16秒前
16秒前
Bingtao_Lian发布了新的文献求助10
17秒前
gougoutu应助李健春采纳,获得10
17秒前
ED应助caixiayin采纳,获得10
17秒前
18秒前
swy发布了新的文献求助10
20秒前
神猪无敌发布了新的文献求助10
21秒前
21秒前
21秒前
丘比特应助xanderxue采纳,获得10
21秒前
21秒前
22秒前
Candy发布了新的文献求助10
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4064929
求助须知:如何正确求助?哪些是违规求助? 3603521
关于积分的说明 11445203
捐赠科研通 3326250
什么是DOI,文献DOI怎么找? 1828584
邀请新用户注册赠送积分活动 898846
科研通“疑难数据库(出版商)”最低求助积分说明 819360