Hyperspectral Band Selection for Spectral–Spatial Anomaly Detection

高光谱成像 异常检测 计算机科学 恒虚警率 探测器 判别式 模式识别(心理学) 人工智能 假警报 图像分辨率 异常(物理) 光谱带 遥感 物理 地质学 凝聚态物理 电信
作者
Weiying Xie,Yunsong Li,Jie Lei,Jian Yang,Chein‐I Chang,Zhen Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (5): 3426-3436 被引量:46
标识
DOI:10.1109/tgrs.2019.2956159
摘要

Owing to significantly improved spectral resolution, a hyperspectral imaging sensor can now uncover many unknown subtle material substances. In many cases, anomalies are usually embedded in the background. To develop a means through which these anomalies may be detected and separated from the background, we propose a spectral-spatial anomaly detection method based on a selected band subset. To be specific, we constrain an unsupervised network by making full use of the underlying physical characteristics which are beneficial to hyperspectral anomaly detection. Based on that, a selection criterion is constructed to adaptively select a subset of bands that essentially contain discriminative and informative features between the anomaly and background in an unsupervised manner. Then, the selected bands are simultaneously inputted into the spatial detector and spectral detector. To overcome the deficiencies of detecting anomalies in only one aspect, an adaptive combination of spatial result and the spectral result is introduced. Finally, a simple and powerful iterative suppression is conducted on the initial detection map to further reduce false alarm rate while ensuring detection capability. Extensive empirical researches performed on eighteen publicly available hyperspectral images (HSIs) of different sizes over different scenes demonstrate that our proposed method can achieve an average detection capability of 0.99564, and the average false alarm rate is one order of magnitude lower than the second one.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯很好完成签到,获得积分20
1秒前
王金豪完成签到,获得积分10
1秒前
和谐以冬完成签到 ,获得积分10
1秒前
春竹发布了新的文献求助10
2秒前
风清扬发布了新的文献求助10
3秒前
江海小舟完成签到 ,获得积分10
3秒前
嗯很好发布了新的文献求助10
4秒前
无极微光应助cat采纳,获得20
5秒前
笑哈哈完成签到,获得积分10
7秒前
乐乐应助成就的傲南采纳,获得10
8秒前
8秒前
8秒前
8秒前
CipherSage应助123采纳,获得10
11秒前
13秒前
完美世界应助你不开花采纳,获得10
13秒前
pK完成签到 ,获得积分10
13秒前
YangYang666发布了新的文献求助10
14秒前
yk123发布了新的文献求助10
14秒前
畜牧笑笑发布了新的文献求助20
16秒前
爆米花应助sooyaaa采纳,获得10
17秒前
苒苒发布了新的文献求助10
17秒前
18秒前
BowieHuang应助逸风望采纳,获得10
18秒前
19秒前
高挑的凤灵完成签到 ,获得积分10
19秒前
yk123完成签到,获得积分10
20秒前
凡人完成签到 ,获得积分10
22秒前
Orange应助小许采纳,获得10
23秒前
草上飞发布了新的文献求助10
23秒前
hana完成签到 ,获得积分10
25秒前
夕荀发布了新的文献求助10
26秒前
青柠完成签到 ,获得积分10
26秒前
打打应助YangYang666采纳,获得10
26秒前
26秒前
27秒前
风清扬发布了新的文献求助10
27秒前
无极微光应助gxc采纳,获得20
27秒前
聪明无施完成签到 ,获得积分10
30秒前
LL发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563756
求助须知:如何正确求助?哪些是违规求助? 4648711
关于积分的说明 14686071
捐赠科研通 4590625
什么是DOI,文献DOI怎么找? 2518701
邀请新用户注册赠送积分活动 1491322
关于科研通互助平台的介绍 1462534