Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing

克里金 计算流体力学 计算机科学 过程(计算) 替代模型 选型 不确定性传播 算法 实验数据 数据挖掘 人工智能 机器学习 工程类 数学 统计 航空航天工程 操作系统
作者
Tesfaye Moges,Zhuo Yang,Kevontrez Jones,Shaw C. Feng,Paul Witherell,Yan Lu
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:21 (5) 被引量:35
标识
DOI:10.1115/1.4050044
摘要

Abstract Multi-scale, multi-physics, computational models are a promising tool to provide detailed insights to understand the process–structure–property–performance relationships in additive manufacturing (AM) processes. To take advantage of the strengths of both physics-based and data-driven models, we propose a novel, hybrid modeling framework for laser powder bed fusion (L-PBF) process. Our unbiased model-integration method combines physics-based, simulation data, and measurement data for approaching a more accurate prediction of melt-pool width. Both a high-fidelity computational fluid dynamics (CFD) model and experiments utilizing optical images are used to generate a combined dataset of melt-pool widths. From this aggregated data set, a hybrid model is developed using data-driven modeling techniques, including polynomial regression and Kriging methods. The performance of the hybrid model is evaluated by computing the average relative error and comparing it with the results of the simulations and surrogate models constructed from the original CFD model and experimental measurements. It is found that the proposed hybrid model performs better in terms of prediction accuracy and computational time. Future work includes a conceptual introduction to the use of an AM ontology to support improved model and data selection when constructing hybrid models. This study can be viewed as a significant step toward the use of hybrid models as predictive models with improved accuracy and without the sacrifice of speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初空月儿发布了新的文献求助10
1秒前
5448489489发布了新的文献求助10
2秒前
3秒前
上官若男应助美味烧鸡采纳,获得10
4秒前
十七完成签到,获得积分10
4秒前
完美世界应助初空月儿采纳,获得10
6秒前
yy7ZZ发布了新的文献求助10
6秒前
传奇3应助舒心思雁采纳,获得10
6秒前
8秒前
兴奋以蓝发布了新的文献求助10
9秒前
10秒前
摇滚谬中庸完成签到 ,获得积分10
11秒前
虾仁炒饭发布了新的文献求助10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
Tourist应助科研通管家采纳,获得150
13秒前
Orange应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得30
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
cc发布了新的文献求助10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
陶醉天问应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
一二完成签到,获得积分10
14秒前
852应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
lilili应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720