已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic value of radiomics based on biparametric prostate MRI imaging in Gleason classification of prostate cancer

医学 前列腺癌 前列腺 放射科 无线电技术 相关性 磁共振弥散成像 预测值 曲线下面积 特征(语言学) 人工智能 磁共振成像 核医学 模式识别(心理学) 癌症 内科学 计算机科学 数学 哲学 药代动力学 语言学 几何学
作者
Hongtao Zhang,Zeyu Hu,Haiyi Wang,Bo Wang,Xu Bai,Huiyi Ye
出处
期刊:Chinese journal of radiology 卷期号:53 (10): 849-852
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.10.011
摘要

Objective To explore the value of radiomics in stratifying the Gleason score (GS) of prostate cancer based on vast image features from biparametric MRI. Methods Three hundred and sixteen patients were enrolled in this study from October, 2015 to December, 2018 and their results of surgical pathology were obtained. The lesions were manually depicted by 3D-Slicer. Then, 106-dimensional features extracted by radiomics were used to conduct Spearman non-parametric correlation test with the high and low risk stratification of GS. The constructed Neural Network was trained with the features after dimension reduction by principal component analysis as the input. Then, the testing set was fed in to get the predictive capability of the model. In the end, 10-fold cross-validation and shuffle of 100 times were used to test the accuracy of the prediction and the generalization ability of the model. Results Seventy seven-dimensional features with significant correlation were found at the level of P valued=0.05 (two-tailed). After dimensional features were reduced, 21 dimensional new feature spaces with 99% original feature information were obtained. The results on the testing data after the 10-fold validation and shuffle were AUC=0.712 with T2WI, AUC=0.689 with DWI (b=1 000 s/mm2), AUC=0.689 with DWI (b=2 000 s/mm2) and AUC=0.691 with DWI (b=3 000 s/mm2). Conclusion The neural network after extracting features from biparametric MRI images can accurately and automatically distinguish the high risk and low risk groups of Gleason grade of prostatic cancer. Key words: Prostatic neoplasms; Magnetic resonance imaging; Radiomics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nqrKQZ完成签到 ,获得积分10
刚刚
Ride发布了新的文献求助10
1秒前
8秒前
11秒前
CodeCraft应助Strive采纳,获得10
18秒前
ZhangDaying完成签到 ,获得积分10
20秒前
OmmeHabiba完成签到,获得积分10
20秒前
千幻完成签到,获得积分10
25秒前
27秒前
pokexuejiao完成签到,获得积分10
29秒前
Icarus完成签到,获得积分10
29秒前
30秒前
星空完成签到 ,获得积分10
31秒前
michaelxia发布了新的文献求助10
33秒前
lwm不想看文献完成签到 ,获得积分10
34秒前
刘刘完成签到,获得积分10
37秒前
sl完成签到 ,获得积分10
39秒前
脑洞疼应助浮光采纳,获得10
40秒前
lisiying发布了新的文献求助10
40秒前
40秒前
完美世界应助ziyanzhang0228采纳,获得10
41秒前
michaelxia完成签到,获得积分20
43秒前
若有光发布了新的文献求助10
46秒前
47秒前
土豪的新儿完成签到 ,获得积分10
47秒前
48秒前
49秒前
49秒前
xiawanren00完成签到,获得积分10
54秒前
54秒前
haobhaobhaob发布了新的文献求助10
54秒前
54秒前
完美世界应助aaa采纳,获得10
55秒前
香蕉觅云应助高兴的傲珊采纳,获得10
55秒前
55秒前
56秒前
57秒前
Strive完成签到,获得积分10
58秒前
深情安青应助若有光采纳,获得10
58秒前
无奈的盼望完成签到 ,获得积分10
59秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4123881
求助须知:如何正确求助?哪些是违规求助? 3661751
关于积分的说明 11589829
捐赠科研通 3362373
什么是DOI,文献DOI怎么找? 1847535
邀请新用户注册赠送积分活动 911983
科研通“疑难数据库(出版商)”最低求助积分说明 827809