Tumor-associated exosomal miRNA biomarkers to differentiate metastatic vs. nonmetastatic non-small cell lung cancer

医学 小RNA 外体 肿瘤科 肺癌 微泡 内科学 生物标志物 队列 癌症 转移 癌症研究 生物 基因 生物化学
作者
Ning Wang,Wei Guo,Xingguo Song,Lisheng Liu,Limin Niu,Xianrang Song,Li Xie
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:58 (9): 1535-1545 被引量:21
标识
DOI:10.1515/cclm-2019-1329
摘要

Abstract Background Exosomal microRNAs (miRNAs) are proposed to be excellent candidate biomarkers for clinical applications. However, little is known about their potential value as diagnostic biomarkers for metastatic non-small cell lung cancer (NSCLC). Methods In this study, microarrays were used to determine distinct miRNA profiles of plasma exosomes in a discovery cohort of healthy donors, metastatic NSCLC and nonmetastatic NSCLC patients. Three potential candidate miRNAs were selected based on the differential expression profiles. The discovery set data were validated by quantitative real-time polymerase chain reaction using a validation cohort. Results NSCLC patients (n = 80) and healthy controls (n = 30) had different exosome-related miRNA profiles in plasma. Results demonstrated that the level of let-7f-5p was decreased in plasma exosomes of NSCLC patients (p < 0.0001). Further analysis of three differentially expressed miRNAs revealed that miR-320a, miR-622 and let-7f-5p levels could significantly segregate patients with metastatic NSCLC from patients with nonmetastatic NSCLC (p < 0.0001, p < 0.0001 and p = 0.023, respectively). In addition, the combination of let-7f-5p, CEA and Cyfra21-1 generated an area under the curve (AUC) of 0.981 for the diagnosis of NSCLC patients, and the combination of miR-320a, miR-622, CEA and Cyfra21-1 had an AUC of 0.900 for the diagnosis of patients with metastatic NSCLC. Conclusions This novel study demonstrated that plasma exosomal miRNAs are promising noninvasive diagnostic biomarkers for metastatic NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白鸽完成签到,获得积分10
1秒前
1秒前
壮观梦之完成签到,获得积分10
1秒前
脸小呆呆完成签到 ,获得积分10
1秒前
3秒前
王珺发布了新的文献求助30
3秒前
万能图书馆应助猪猪hero采纳,获得10
3秒前
4秒前
chen完成签到,获得积分10
4秒前
大橘完成签到 ,获得积分10
6秒前
dghjk完成签到,获得积分10
7秒前
梅西完成签到 ,获得积分10
7秒前
汉堡包应助xiaomei51采纳,获得10
7秒前
ZD发布了新的文献求助10
8秒前
8秒前
@Hi发布了新的文献求助15
9秒前
nater1ver完成签到,获得积分10
9秒前
着急的千山完成签到 ,获得积分10
10秒前
11秒前
空白完成签到 ,获得积分10
13秒前
猪猪hero发布了新的文献求助10
14秒前
科研通AI2S应助聿1988采纳,获得10
16秒前
Jasper应助聿1988采纳,获得10
16秒前
方翔应助球球的铲屎官采纳,获得200
16秒前
17秒前
逆时针应助lizong采纳,获得10
17秒前
飞花的季节完成签到,获得积分10
19秒前
dachang完成签到,获得积分20
20秒前
20秒前
今后应助科研通管家采纳,获得10
20秒前
YY应助科研通管家采纳,获得30
21秒前
fancynancy完成签到,获得积分10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
若水应助Qing采纳,获得10
23秒前
顺风顺水顺财神完成签到 ,获得积分10
23秒前
25秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056219
求助须知:如何正确求助?哪些是违规求助? 3594312
关于积分的说明 11419936
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971