清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Active Balancing Mechanism for Imbalanced Medical Data in Deep Learning–Based Classification Models

计算机科学 支持向量机 人工智能 朴素贝叶斯分类器 模式识别(心理学) 机器学习 数据挖掘 采样(信号处理) 计算机视觉 滤波器(信号处理)
作者
Hongyi Zhang,Haoke Zhang,Sandeep Pirbhulal,Wanqing Wu,Victor Hugo C. de Albuquerque
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:16 (1s): 1-15 被引量:24
标识
DOI:10.1145/3357253
摘要

Imbalanced data always has a serious impact on a predictive model, and most under-sampling techniques consume more time and suffer from loss of samples containing critical information during imbalanced data processing, especially in the biomedical field. To solve these problems, we developed an active balancing mechanism (ABM) based on valuable information contained in the biomedical data. ABM adopts the Gaussian naïve Bayes method to estimate the object samples and entropy as a query function to evaluate sample information and only retains valuable samples of the majority class to achieve under-sampling. The Physikalisch Technische Bundesanstalt diagnostic electrocardiogram (ECG) database, including 5,173 normal ECG samples and 26,654 myocardial infarction ECG samples, is applied to verify the validity of ABM. At imbalance rates of 13 and 5, experimental results reveal that ABM takes 7.7 seconds and 13.2 seconds, respectively. Both results are significantly faster than five conventional under-sampling methods. In addition, at the imbalance rate of 13, ABM-based data obtained the highest accuracy of 92.23% and 97.52% using support vector machines and modified convolutional neural networks (MCNNs) with eight layers, respectively. At the imbalance rate of 5, the processed data by ABM also achieved the best accuracy of 92.31% and 98.46% based on support vector machines and MCNNs, respectively. Furthermore, ABM has better performance than two compared methods in F 1-measure, G-means, and area under the curve. Consequently, ABM could be a useful and effective approach to deal with imbalanced data in general, particularly biomedical myocardial infarction ECG datasets, and the MCNN can also achieve higher performance compared to the state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科通通完成签到,获得积分10
1秒前
英喆完成签到 ,获得积分10
5秒前
凤迎雪飘完成签到,获得积分10
12秒前
21秒前
2022H发布了新的文献求助20
26秒前
whuhustwit完成签到,获得积分10
29秒前
31秒前
科研通AI5应助2022H采纳,获得10
38秒前
1分钟前
fuyuhaoy完成签到,获得积分10
1分钟前
Sunny完成签到,获得积分10
1分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
共享精神应助俊逸吐司采纳,获得10
2分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
2分钟前
钉钉完成签到 ,获得积分10
3分钟前
3211应助科研通管家采纳,获得10
4分钟前
金钰贝儿完成签到,获得积分10
4分钟前
meijuan1210完成签到 ,获得积分10
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
顾矜应助大雄先生采纳,获得10
5分钟前
Adam完成签到 ,获得积分10
5分钟前
5分钟前
大雄先生发布了新的文献求助10
5分钟前
大雄先生完成签到,获得积分20
5分钟前
星辰大海应助lulululululu采纳,获得30
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
今后应助Tia采纳,获得10
6分钟前
深林盛世完成签到,获得积分10
7分钟前
xiaoyi完成签到 ,获得积分10
7分钟前
吃的饭广泛完成签到,获得积分10
7分钟前
Barid完成签到,获得积分10
7分钟前
8分钟前
俊逸吐司发布了新的文献求助10
8分钟前
8分钟前
8分钟前
俊逸吐司完成签到 ,获得积分10
8分钟前
沙海沉戈完成签到,获得积分0
8分钟前
dery完成签到,获得积分10
8分钟前
asdwind完成签到,获得积分10
8分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819960
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418873
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695009
邀请新用户注册赠送积分活动 814791
科研通“疑难数据库(出版商)”最低求助积分说明 768522