数学
简并能级
指数
藤田级数
临界指数
类型(生物学)
组合数学
数学分析
几何学
物理
缩放比例
量子力学
生态学
哲学
语言学
气象学
生物
标识
DOI:10.57262/die/1356050338
摘要
We consider the degenerate Keller-Segel system (KS) of Nagai type below. We prove that when $m > 2-\frac{2}{N}$, the problem (KS) is solvable globally in time without any restriction on the size of the initial data and that when $1 < m \le 2-\frac{2}{N}$, the problem (KS) evolves in a finite time blow-up for some large initial data. Hence, we completely classify the existence and non-existence of the time global solution by means of the exponent $m=2-\frac{2}{N}$, which generalizes the Fujita exponent for (KS).
科研通智能强力驱动
Strongly Powered by AbleSci AI