Multi-objective optimization of spherical roller bearings based on fatigue and wear using evolutionary algorithm

方位(导航) 灵敏度(控制系统) 多目标优化 分类 遗传算法 点(几何) 数学优化 计算机科学 结构工程 工程类 数学 算法 几何学 电子工程 人工智能
作者
Ashish Jat,Rajiv Tiwari
出处
期刊:Journal of King Saud University: Engineering Sciences [Elsevier BV]
卷期号:32 (1): 58-68 被引量:14
标识
DOI:10.1016/j.jksues.2018.03.002
摘要

In Spherical Roller Bearings (SRBs) design the fatigue and wear lives are the most important factors. The fatigue life of bearing is connected to dynamic capacity (Cd) and wear life of bearing is linked with the elasto-hydrodynamic minimum film thickness (hmin). Multi-objective optimization (MOO) of SRBs has been considered in the present study. For SRBs optimization problem, two objectives (Cd and hmin), eight design variables, and twenty-two constraints have been considered. Bearing pitch diameter, roller diameter, number of rollers, effective roller length and the contact angle are five design geometrical variables and other three are constraint parameters. Objective functions have been optimized individually as well as simultaneously. Elitist Non Dominated Sorting Genetic Algorithm (NSGA-II) is used to solve a non-linear constrained optimization problem of the SRB design. A convergence methodology is performed to the bearing design for global optimum results. Results obtained from NSGA-II runs of MOO have been used to draw Pareto-optimal fronts (POFs). Optimum bearing dimensions are selected by considering the knee-point solution on the POFs. Results indicate that the dynamic capacity of optimized bearing got enhanced thus increase in life of the bearing. A sensitivity analysis is conducted to identify the sensitivity of objective functions with design variables. The sensitivity analysis plays an important part in deciding the tolerances, which can be provided to design variables for the manufacturing of optimized bearings. The results obtained from MOO problem have been compared with available literature and are found to be better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动谷蓝完成签到,获得积分10
刚刚
传奇3应助JIANG采纳,获得30
1秒前
1秒前
我是老大应助王王采纳,获得10
1秒前
jklhughjgiu发布了新的文献求助10
2秒前
青山完成签到,获得积分10
4秒前
CodeCraft应助博修采纳,获得10
5秒前
马志勋完成签到,获得积分10
6秒前
天天快乐应助stefdee采纳,获得10
6秒前
7秒前
7秒前
糊涂涂完成签到 ,获得积分10
8秒前
htm426完成签到,获得积分10
9秒前
stefdee完成签到,获得积分20
12秒前
yc发布了新的文献求助10
12秒前
zz关闭了zz文献求助
13秒前
酷波er应助稳重的灵安采纳,获得10
14秒前
wgw完成签到,获得积分10
14秒前
华子的五A替身完成签到,获得积分10
15秒前
Ava应助fengzi151采纳,获得10
17秒前
19秒前
20秒前
科研通AI5应助嘻嘻采纳,获得10
21秒前
cccyyb完成签到,获得积分10
23秒前
文献完成签到,获得积分10
24秒前
博修发布了新的文献求助10
24秒前
qcck完成签到,获得积分10
24秒前
张梦阳发布了新的文献求助10
24秒前
27秒前
FashionBoy应助稳重的灵安采纳,获得10
28秒前
28秒前
木子完成签到,获得积分10
30秒前
科研通AI2S应助高兴莆采纳,获得10
31秒前
32秒前
阿九发布了新的文献求助10
32秒前
大个应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得30
33秒前
蜡笔小z发布了新的文献求助10
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451