脱氨基
亮氨酸
内脏的
氧化脱氨基
转氨作用
内科学
生物化学
内分泌学
骨骼肌
肾
化学
生物
氨基酸
医学
血流动力学
酶
作者
Giacomo Garibotto,Daniela Verzola,Monica Vettore,Paolo Tessari
标识
DOI:10.1139/cjpp-2017-0439
摘要
The first steps of leucine utilization are reversible deamination to α-ketoisocaproic acid (α-KIC) and irreversible oxidation. Recently, the regulatory role of leucine deamination over oxidation was underlined in rodents. Our aim was to measure leucine deamination and reamination in the whole body, in respect to previously determined rates across individual organs, in humans. By leucine and KIC isotope kinetics, we determined whole-body leucine deamination and reamination, and we compared these rates with those already reported across the sampled organs. As an in vivo counterpart of the "metabolon" concept, we analysed ratios between oxidation and either deamination or reamination. Leucine deamination to KIC was greater than KIC reamination to leucine in the whole body (p = 0.005), muscles (p = 0.005), and the splanchnic area (p = 0.025). These rates were not significantly different in the kidneys. Muscle accounted for ≈60% and ≈78%, the splanchnic bed for ≈15% and ≈15%, and the kidney for ≈12% and ≈18%, of whole-body leucine deamination and reamination rates, respectively. In the kidney, percent leucine oxidation over either deamination or reamination was >3-fold greater than muscle and the splanchnic bed. Skeletal muscle contributes by the largest fraction of leucine deamination, reamination, and oxidation. However, in relative terms, the kidney plays a key role in leucine oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI