细胞命运测定
图嵌入
计算机科学
计算生物学
图形
基因
生物
嵌入
谱系(遗传)
转录因子
理论计算机科学
遗传学
人工智能
作者
Xiaojie Qiu,Qi Mao,Ying Tang,Li Wang,Raghav Chawla,Hannah A. Pliner,Cole Trapnell
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2017-08-21
卷期号:14 (10): 979-982
被引量:3554
摘要
Monocle 2 uses reversed graph embedding to automatically learn complex, branched pseudotime trajectories of differentiation or cellular state changes from single-cell expression data. Monocle 2 uses reversed graph embedding to automatically learn complex, branched pseudotime trajectories of differentiation or cellular state changes from single-cell expression data. Single-cell trajectories can unveil how gene regulation governs cell fate decisions. However, learning the structure of complex trajectories with multiple branches remains a challenging computational problem. We present Monocle 2, an algorithm that uses reversed graph embedding to describe multiple fate decisions in a fully unsupervised manner. We applied Monocle 2 to two studies of blood development and found that mutations in the genes encoding key lineage transcription factors divert cells to alternative fates.
科研通智能强力驱动
Strongly Powered by AbleSci AI