安全性令牌
改述
计算机科学
机器翻译
相似性(几何)
人工智能
判决
公制(单位)
选择(遗传算法)
自然语言处理
任务(项目管理)
隐藏字幕
机器学习
语音识别
图像(数学)
运营管理
计算机安全
管理
经济
作者
Tianyi Zhang,Varsha Kishore,Felix Wu,Kilian Q. Weinberger,Yoav Artzi
出处
期刊:Cornell University - arXiv
日期:2019-01-01
被引量:2028
标识
DOI:10.48550/arxiv.1904.09675
摘要
We propose BERTScore, an automatic evaluation metric for text generation. Analogously to common metrics, BERTScore computes a similarity score for each token in the candidate sentence with each token in the reference sentence. However, instead of exact matches, we compute token similarity using contextual embeddings. We evaluate using the outputs of 363 machine translation and image captioning systems. BERTScore correlates better with human judgments and provides stronger model selection performance than existing metrics. Finally, we use an adversarial paraphrase detection task to show that BERTScore is more robust to challenging examples when compared to existing metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI