Reliable gene mutation prediction in clear cell renal cell carcinoma through multi-classifier multi-objective radiogenomics model

放射基因组学 分类器(UML) BAP1型 人工智能 计算机科学 接收机工作特性 机器学习 肾透明细胞癌 肾细胞癌 基因 医学 无线电技术 生物 肿瘤科 遗传学
作者
Xi Chen,Zhiguo Zhou,Raquibul Hannan,K. Thomas,Iván Pedrosa,Payal Kapur,James Brugarolas,Xuanqin Mou,Jing Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (21): 215008-215008 被引量:46
标识
DOI:10.1088/1361-6560/aae5cd
摘要

Genetic studies have identified associations between gene mutations and clear cell renal cell carcinoma (ccRCC). Since the complete gene mutational landscape cannot be characterized through biopsy and sequencing assays for each patient, non-invasive tools are needed to determine the mutation status for tumors. Radiogenomics may be an attractive alternative tool to identify disease genomics by analyzing amounts of features extracted from medical images. Most current radiogenomics predictive models are built based on a single classifier and trained through a single objective. However, since many classifiers are available, selecting an optimal model is challenging. On the other hand, a single objective may not be a good measure to guide model training. We proposed a new multi-classifier multi-objective (MCMO) radiogenomics predictive model. To obtain more reliable prediction results, similarity-based sensitivity and specificity were defined and considered as the two objective functions simultaneously during training. To take advantage of different classifiers, the evidential reasoning (ER) approach was used for fusing the output of each classifier. Additionally, a new similarity-based multi-objective optimization algorithm (SMO) was developed for training the MCMO to predict ccRCC related gene mutations (VHL, PBRM1 and BAP1) using quantitative CT features. Using the proposed MCMO model, we achieved a predictive area under the receiver operating characteristic curve (AUC) over 0.85 for VHL, PBRM1 and BAP1 genes with balanced sensitivity and specificity. Furthermore, MCMO outperformed all the individual classifiers, and yielded more reliable results than other optimization algorithms and commonly used fusion strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助yangkang采纳,获得10
1秒前
1秒前
Eliauk完成签到,获得积分10
2秒前
明钟达发布了新的文献求助10
3秒前
隐形曼青应助Brave采纳,获得10
3秒前
生动的以云完成签到 ,获得积分10
4秒前
5秒前
6秒前
科研小乞丐完成签到,获得积分10
6秒前
7秒前
酷波er应助Kz采纳,获得10
7秒前
自然的书易完成签到,获得积分10
8秒前
小曲完成签到 ,获得积分10
8秒前
小民完成签到 ,获得积分10
9秒前
Owen应助橘子橙子采纳,获得10
10秒前
青争完成签到,获得积分10
10秒前
12秒前
yangkang完成签到,获得积分10
14秒前
14秒前
15秒前
Piggy发布了新的文献求助10
15秒前
蜘蛛完成签到,获得积分20
16秒前
June完成签到,获得积分10
18秒前
wxm完成签到,获得积分20
18秒前
19秒前
20秒前
wxm发布了新的文献求助10
21秒前
不亦乐乎发布了新的文献求助10
21秒前
zx完成签到,获得积分10
22秒前
英姑应助不上课不行采纳,获得10
24秒前
孙胜凤完成签到,获得积分10
26秒前
yy发布了新的文献求助10
27秒前
wykion完成签到,获得积分0
27秒前
Owen应助严雨乐采纳,获得10
27秒前
28秒前
徐曼关注了科研通微信公众号
29秒前
丁丁丁发布了新的文献求助10
30秒前
留胡子的迎梦关注了科研通微信公众号
31秒前
zojoy完成签到,获得积分10
31秒前
温暖妙彤完成签到 ,获得积分10
32秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062829
求助须知:如何正确求助?哪些是违规求助? 3601377
关于积分的说明 11437783
捐赠科研通 3324656
什么是DOI,文献DOI怎么找? 1827755
邀请新用户注册赠送积分活动 898299
科研通“疑难数据库(出版商)”最低求助积分说明 818997