Acoustic modification of collagen hydrogels facilitates cellular remodeling

自愈水凝胶 细胞外基质 生物材料 生物物理学 胶原纤维 生物医学工程 化学 组织工程 材料科学 纳米技术 生物化学 解剖 生物 医学 有机化学
作者
Emma G. Norris,Diane Dalecki,Denise C. Hocking
出处
期刊:Materials today bio [Elsevier BV]
卷期号:3: 100018-100018 被引量:17
标识
DOI:10.1016/j.mtbio.2019.100018
摘要

Developing tunable biomaterials that have the capacity to recreate the physical and biochemical characteristics of native extracellular matrices (ECMs) with spatial fidelity is important for a variety of biomedical, biological, and clinical applications. Several factors have made the ECM protein, collagen I, an attractive biomaterial, including its ease of isolation, low antigenicity and toxicity, and biodegradability. However, current collagen gel formulations fail to recapitulate the range of collagen structures observed in native tissues, presenting a significant challenge in achieving the full potential of collagen-based biomaterials. Collagen fiber structure can be manipulated in vitro through mechanical forces, environmental factors, or thermal mechanisms. Here, we describe a new ultrasound-based fabrication technology that exploits the ability of ultrasound to generate localized mechanical forces to control the collagen fiber microstructure non-invasively. The results indicate that exposing soluble collagen to ultrasound (7.8 or 8.8 MHz; 3.2-10 W/cm2) during hydrogel formation leads to local variations in collagen fiber structure and organization that support increased levels of cell migration. Furthermore, multiphoton imaging revealed increased cell-mediated collagen remodeling of ultrasound-exposed but not sham-exposed hydrogels, including formation of multicellular aggregates, collagen fiber bundle contraction, and increased binding of collagen hybridizing peptides. Skin explant cultures obtained from diabetic mice showed similar enhancement of cell-mediated remodeling of ultrasound-exposed but not sham-exposed collagen hydrogels. Using the mechanical forces associated with ultrasound to induce local changes in collagen fibril structure and organization to functionalize native biomaterials is a promising non-invasive and non-toxic technology for tissue engineering and regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
彭于彦祖应助科研通管家采纳,获得150
刚刚
orixero应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得30
刚刚
朝暮应助科研通管家采纳,获得10
刚刚
吃葡萄皮应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
Vanilla应助科研通管家采纳,获得150
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
5秒前
爱听歌的夏烟完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助朴实的之云采纳,获得10
7秒前
TT完成签到 ,获得积分10
8秒前
科研通AI5应助SYSUer采纳,获得10
9秒前
Dream完成签到 ,获得积分10
9秒前
pipi发布了新的文献求助10
10秒前
xuan发布了新的文献求助10
11秒前
执着的一兰完成签到,获得积分10
11秒前
11秒前
11秒前
123发布了新的文献求助30
12秒前
浮游应助叶子采纳,获得10
14秒前
A晨完成签到 ,获得积分10
14秒前
勤恳的天亦完成签到,获得积分10
15秒前
酒剑仙完成签到,获得积分10
15秒前
BRADp发布了新的文献求助10
15秒前
hihihihihi完成签到,获得积分10
16秒前
阿伦艾弗森完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919215
求助须知:如何正确求助?哪些是违规求助? 4191279
关于积分的说明 13016776
捐赠科研通 3961615
什么是DOI,文献DOI怎么找? 2171750
邀请新用户注册赠送积分活动 1189709
关于科研通互助平台的介绍 1098297