Mechanism for material removal in ultrasonic vibration helical milling of Ti 6Al 4V alloy

材料科学 振动 钛合金 表面粗糙度 机械加工 机身 复合材料 机制(生物学) 超声波传感器 表面光洁度 合金 结构工程 机械工程 GSM演进的增强数据速率 冶金 声学 工程类 物理 电信 哲学 认识论
作者
Guang Chen,Chengzu Ren,Yunhe Zou,Xuda Qin,Lianpeng Lu,Shipeng Li
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier BV]
卷期号:138: 1-13 被引量:92
标识
DOI:10.1016/j.ijmachtools.2018.11.001
摘要

Abstract High quality hole-making technology in the aviation industry is urgently needed due to the application of difficult-to-cut materials, such as titanium alloy, composite materials and the stacks in aircraft fuselage skins. To improve the hole-making quality, an ultrasonic vibration helical milling (UVHM) technology was developed for machining of Ti 6Al 4V alloy, meanwhile, comparison experiments were conducted between UVHM and conventional helical milling (HM) processes. Material removal mechanism of UVHM was investigated by modeling of cutting trajectories and the analysis of tool-workpiece contact behavior for bottom and peripheral cutting edges. The actual vibration frequency in UVHM was also determined by a theoretical-experimental combined method. Due to the vibration in UVHM, the bottom cutting edges generate discontinuous contact with workpiece. Unit forces considering material removal were modeled and applied to analyze the axial force reduction. The axial cutting forces of UVHM were reduced by 38–64% compared with HM at different cutting speeds. The cutting speed of peripheral cutting edge changes periodically. The cutting edges can separate with chips due to axial vibration, which will contribute to reducing the cutting forces and improving heat dissipation. Meanwhile, a friction effect was generated by the peripheral cutting edge which can improve the micro-scale surface roughness. Due to the effects of periodical friction and compression by ultrasonic vibration, UVHM increases the surface compressive stresses by 85% and 99% at the hole surface for axial and circumferential directions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Swenson发布了新的文献求助30
刚刚
1秒前
2秒前
善学以致用应助板栗采纳,获得10
2秒前
Singularity应助逆行者采纳,获得10
3秒前
桐桐应助南庭采纳,获得10
3秒前
飞鸿踏雪泥发布了新的文献求助100
3秒前
cccjjjhhh发布了新的文献求助10
3秒前
高挑的小虾米完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
蘑菇发布了新的文献求助10
7秒前
8秒前
9秒前
yyc666发布了新的文献求助10
10秒前
Swenson完成签到,获得积分10
10秒前
寻风完成签到,获得积分10
11秒前
mia005发布了新的文献求助30
11秒前
隐形曼青应助111采纳,获得10
13秒前
shshjzh完成签到,获得积分10
13秒前
伍六七完成签到,获得积分10
14秒前
土豆晴发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
18秒前
无限的宫苴完成签到 ,获得积分20
19秒前
丘比特应助阿ya采纳,获得10
20秒前
zyh发布了新的文献求助10
21秒前
22秒前
cs发布了新的文献求助10
23秒前
orange发布了新的文献求助10
23秒前
斯文败类应助向晚采纳,获得10
26秒前
26秒前
萧客发布了新的文献求助10
26秒前
星辰大海应助鲤鱼灵波采纳,获得10
26秒前
27秒前
28秒前
思源应助福猪猪采纳,获得10
28秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3856815
求助须知:如何正确求助?哪些是违规求助? 3399220
关于积分的说明 10611374
捐赠科研通 3121421
什么是DOI,文献DOI怎么找? 1720683
邀请新用户注册赠送积分活动 828719
科研通“疑难数据库(出版商)”最低求助积分说明 777773