Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach

扁桃形结构 心理学 神经影像学 单变量 静息状态功能磁共振成像 多元统计 精神科 神经科学 听力学 临床心理学 医学 机器学习 计算机科学
作者
Andrew A. Nicholson,Maria Densmore,Margaret C. McKinnon,Richard W. J. Neufeld,Paul Frewen,Jean Théberge,Rakesh Jetly,Julia Richardson,Ruth A. Lanius
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:49 (12): 2049-2059 被引量:70
标识
DOI:10.1017/s0033291718002866
摘要

The field of psychiatry would benefit significantly from developing objective biomarkers that could facilitate the early identification of heterogeneous subtypes of illness. Critically, although machine learning pattern recognition methods have been applied recently to predict many psychiatric disorders, these techniques have not been utilized to predict subtypes of posttraumatic stress disorder (PTSD), including the dissociative subtype of PTSD (PTSD + DS).Using Multiclass Gaussian Process Classification within PRoNTo, we examined the classification accuracy of: (i) the mean amplitude of low-frequency fluctuations (mALFF; reflecting spontaneous neural activity during rest); and (ii) seed-based amygdala complex functional connectivity within 181 participants [PTSD (n = 81); PTSD + DS (n = 49); and age-matched healthy trauma-unexposed controls (n = 51)]. We also computed mass-univariate analyses in order to observe regional group differences [false-discovery-rate (FDR)-cluster corrected p < 0.05, k = 20].We found that extracted features could predict accurately the classification of PTSD, PTSD + DS, and healthy controls, using both resting-state mALFF (91.63% balanced accuracy, p < 0.001) and amygdala complex connectivity maps (85.00% balanced accuracy, p < 0.001). These results were replicated using independent machine learning algorithms/cross-validation procedures. Moreover, areas weighted as being most important for group classification also displayed significant group differences at the univariate level. Here, whereas the PTSD + DS group displayed increased activation within emotion regulation regions, the PTSD group showed increased activation within the amygdala, globus pallidus, and motor/somatosensory regions.The current study has significant implications for advancing machine learning applications within the field of psychiatry, as well as for developing objective biomarkers indicative of diagnostic heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rodrisk完成签到 ,获得积分10
1秒前
小禾一定行完成签到,获得积分10
2秒前
科研小秦发布了新的文献求助10
3秒前
6秒前
活ni的pig完成签到 ,获得积分10
9秒前
端庄梦桃发布了新的文献求助10
10秒前
也许飞鸟能到那个木屋完成签到,获得积分10
10秒前
小不完成签到 ,获得积分10
13秒前
19秒前
20秒前
天天快乐应助大美女采纳,获得10
22秒前
春一又木发布了新的文献求助10
23秒前
结实山水完成签到 ,获得积分10
27秒前
春一又木完成签到,获得积分10
28秒前
31秒前
33秒前
34秒前
浏阳河发布了新的文献求助10
35秒前
36秒前
丘比特应助edihnori采纳,获得10
38秒前
38秒前
唠叨的含芙完成签到,获得积分10
39秒前
39秒前
39秒前
英俊的铭应助aaiirrii采纳,获得10
40秒前
肖肖肖完成签到 ,获得积分10
42秒前
sgr发布了新的文献求助10
43秒前
43秒前
44秒前
fengyun1990完成签到,获得积分10
45秒前
45秒前
浏阳河发布了新的文献求助10
46秒前
齐天完成签到 ,获得积分10
49秒前
炙热的香芦完成签到,获得积分10
53秒前
浏阳河发布了新的文献求助10
57秒前
科研通AI5应助纯真的德地采纳,获得10
1分钟前
科研通AI5应助rsyt0504采纳,获得10
1分钟前
皮汶灵完成签到,获得积分10
1分钟前
贤惠的早晨完成签到 ,获得积分10
1分钟前
王博龙完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767977
求助须知:如何正确求助?哪些是违规求助? 4104803
关于积分的说明 12697732
捐赠科研通 3822693
什么是DOI,文献DOI怎么找? 2109737
邀请新用户注册赠送积分活动 1134254
关于科研通互助平台的介绍 1015307