清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements

随机森林 均方误差 环境科学 支持向量机 梯度升压 决策树 统计 计算机科学 数学 人工智能 机器学习 遥感 地质学
作者
Hassan Abbasian,Eisa Solgi,Seyed Mohsen Hosseini,Seyed Hossein Kia
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:466: 109901-109901 被引量:23
标识
DOI:10.1016/j.ecolmodel.2022.109901
摘要

• Random forest (RF) has the best performance statistically compared to the SVM, GBM, DT and MLR models. • Deciduous broadleaf forest (DBF) shows the lowest uncertainty in terms of NEE of CO 2 estimation. • Soil temperature plays a critical role in modeling improvement across the grasslands. • The highest uncertainty occurs during the maturity period in all PFTs. Identifying the complex relationships of Net Ecosystem Exchange (NEE) of CO 2 , as an underlying factor of land surface, and atmosphere interactions is extremely important to the dynamic of carbon fluxes. Assessment of the model-based estimation of land-atmosphere carbon flux across various plant functional types (PFTs) can support the accurate identification of the carbon cycle and the adaptation and mitigation of climate change programs. Five different machine learning methods named Multiple Linear Regression (MLR), Support Vector Machine (SVM), Decision Tree (DT), Gradient Boosting Machine (GBM) and Random Forest (RF) were used to predict daily NEE magnitude. In this study, 24 sites classified into four PFTs of Deciduous Broadleaf Forest (DBF), Evergreen Needle-leaf Forest (ENF), Mixed Forest (MF) and Grassland (GRA) were examined through ground-based flux tower data. The numbers of sites were six, four, six and eight for DBF, ENF, MF and GRA respectively, while measurement periods varied from two to thirteen years. The model calibration and validation were carried out using 70%and 30% of the data-set, respectively. The models’ performances were assessed using statistical indices including the coefficient of determination (R 2 ), the Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) through Python software. Based on statistical indices, the models showed different levels of capability when analyzing data from the DBF, ENF, MF and GRA sites. Among the models, RF showed the best performance, MLR showed the poorest performance, while SVM, GBM and DT models all had moderate responses. The effect of both air and soil temperatures, as the state variables, were examined to assess model performance. Whether soil temperature is included in the model plays a more important role in the performance of the models in grassland than in forest. Soil temperature inclusion, as an input variable, improved the models’ performance about 14% in grassland, while it improved performance 2.4%, 2.4% and 3.5% in ENF, MF and DBF, respectively. Finally, to assess the models' performances, the NEE behavior in terms of over- or under- estimation was investigated across each PFT and over various phenological periods. The results indicate that high uncertainty occurs between the 140th and 220th days of the Julian calendar for forested areas and between the 120th and 210thdays for grassland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的妙海完成签到 ,获得积分0
刚刚
Evangeline993完成签到,获得积分10
1秒前
语恒完成签到,获得积分10
4秒前
扶我起来写论文完成签到 ,获得积分10
12秒前
yuntong完成签到 ,获得积分0
18秒前
燕儿完成签到 ,获得积分10
18秒前
24秒前
科研通AI2S应助三微之廿采纳,获得10
29秒前
大胖小子完成签到,获得积分10
39秒前
红箭烟雨完成签到,获得积分10
52秒前
鬼见愁发布了新的文献求助10
55秒前
1分钟前
青山完成签到 ,获得积分10
1分钟前
1分钟前
飞龙在天完成签到 ,获得积分10
1分钟前
LXYzzm发布了新的文献求助10
1分钟前
不想干活应助科研狗采纳,获得20
1分钟前
汉堡包应助三微之廿采纳,获得10
1分钟前
奔波霸完成签到 ,获得积分10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
不信人间有白头完成签到 ,获得积分10
1分钟前
herpes完成签到 ,获得积分0
1分钟前
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
慕青应助hellogene采纳,获得10
1分钟前
emxzemxz完成签到 ,获得积分10
1分钟前
marshmallow完成签到,获得积分10
2分钟前
2分钟前
孤独的问柳完成签到,获得积分10
2分钟前
hellogene发布了新的文献求助10
2分钟前
hellogene完成签到,获得积分10
2分钟前
坚定的若枫完成签到,获得积分10
2分钟前
和风完成签到 ,获得积分10
2分钟前
啦啦啦完成签到 ,获得积分10
2分钟前
coolplex完成签到 ,获得积分10
2分钟前
甜甜的tiantian完成签到 ,获得积分10
2分钟前
1461完成签到 ,获得积分0
2分钟前
gengsumin完成签到,获得积分10
2分钟前
皮皮完成签到 ,获得积分10
3分钟前
路路完成签到 ,获得积分10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162501
求助须知:如何正确求助?哪些是违规求助? 3698057
关于积分的说明 11675091
捐赠科研通 3388455
什么是DOI,文献DOI怎么找? 1858136
邀请新用户注册赠送积分活动 918833
科研通“疑难数据库(出版商)”最低求助积分说明 831703