Deep Neural Network for Diagnosis of Bone Metastasis

卷积神经网络 计算机科学 骨转移 深度学习 人工智能 工作流程 转移 恶性肿瘤 癌症 医学 病理 数据库 内科学
作者
Vincent Peter C. Magboo,Patricia Angela R. Abu
标识
DOI:10.1145/3520084.3520107
摘要

The presence of bone metastasis represents an advanced stage of malignancy with a median survival of a few months and with limited appropriate therapies. The consequent structural bone destruction leads to considerable morbidity, including untreatable pain, fractures, functional impairment which impact on the patient's quality of life. Hence, it is important to make an early diagnosis of bone metastasis to provide an accurate patient's treatment plan to improve overall survival rates and/or quality of life. The aim of this study is to develop a deep learning model using a convolutional neural network to assess the presence of bone metastasis from bone scintigram dataset of a local medical institution. The creation of the network architecture was made using an exploratory process combined with bibliographic search. Several experiments were made to determine optimum combination of parameters (input pixel size, dropout rates, batch size, and number of dense nodes). The model was also compared to the pre-trained architecture used in medical image classification reported in the literature: (1) VGG16, (2) ResNet50, (3) DenseNet121, and (4) InceptionV3. Results showed our base CNN model with good metric performance of 83.97% accuracy, 75.55% precision, 70.83% recall, 73.11% F1 score, and 89.81 % specificity. Our base CNN model outperformed VGG16, InceptionV3 and ResNet50. DenseNet121 showed the higher accuracy and precision results for this dataset, but our base CNN obtained better recall score. Our study showed promising results which could be integrated in the clinical routine workflow. The study has the potential to enhance cancer metastasis detection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
勤劳诗云完成签到,获得积分10
4秒前
小天发布了新的文献求助30
5秒前
Akim应助wodetaiyangLLL采纳,获得10
7秒前
Suchus发布了新的文献求助30
7秒前
8秒前
大红完成签到,获得积分10
12秒前
nn发布了新的文献求助10
12秒前
折木浮华发布了新的文献求助20
13秒前
李林完成签到,获得积分10
16秒前
科研小白完成签到 ,获得积分10
20秒前
21秒前
无花果应助木子采纳,获得10
21秒前
24秒前
24秒前
zzz完成签到,获得积分10
25秒前
27秒前
柠檬西米露完成签到,获得积分10
28秒前
29秒前
Bingtao_Lian发布了新的文献求助10
30秒前
木子发布了新的文献求助10
32秒前
32秒前
yue957发布了新的文献求助10
32秒前
柚皘完成签到,获得积分20
33秒前
nn完成签到,获得积分10
33秒前
传奇3应助快乐科研鼠采纳,获得10
33秒前
深情安青应助lllzzz采纳,获得10
33秒前
35秒前
36秒前
Hunter发布了新的文献求助10
37秒前
坦率翠霜完成签到 ,获得积分10
39秒前
cdercder应助yangwl采纳,获得10
39秒前
就叫柠檬吧应助折木浮华采纳,获得20
39秒前
40秒前
zxc发布了新的文献求助30
40秒前
41秒前
41秒前
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757