A lightweight detector based on attention mechanism for aluminum strip surface defect detection

计算机科学 条状物 卷积神经网络 卷积(计算机科学) 人工智能 模式识别(心理学) 实时计算 人工神经网络
作者
Zhuxi Ma,Yibo Li,Minghui Huang,Qianbin Huang,Jie Cheng,Si Tang
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:136: 103585-103585 被引量:75
标识
DOI:10.1016/j.compind.2021.103585
摘要

Many problems associated with the visual inspection of surface defects on aluminum strips remain to be solved, including the inapplicability of large-scale algorithm and computing equipment on site, and the balance between detection speed and accuracy. This paper proposes a novel and lightweight detection method based on attention mechanism, and focuses on the industrial application of aluminum strip defect inspection. On the basis of the YOLOv4 framework, the backbone network YOLO-DCSAM is constructed to utilize depthwise separable convolution and to design a parallel dual-channel attention module. It compresses the network scale and better enhances the effect of different channels on the feature map. At the same time, the neck network is redesigned and lightweighted for feature fusion, which can increase the receptive field and further simplify the network through SPPM-PANet module. Moreover, by optimization measure, such as the anchor box size of the cluster and improved loss function, the pertinence of model is strengthened to defect objects. The proposed method is trained and tested on the straightening aluminum strip surface data collected from the cold rolling workshop of Liuzhou Yinhai Aluminum Co., Ltd. Experiments show that the proposed method achieves a mAP of 96.28%, thereby outperforming the original YOLOv4 model. Moreover, as compared with YOLOv4, the model volume is reduced by 83.38% and the detection speed is increased by 3 times, thereby exhibiting the potential for real-time detection on the embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
一只萌新完成签到,获得积分10
1秒前
1秒前
沉默的婴发布了新的文献求助20
1秒前
怡轻肝发布了新的文献求助10
1秒前
2秒前
2秒前
jz完成签到,获得积分10
2秒前
2秒前
yolo完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
ikun416关注了科研通微信公众号
5秒前
6秒前
7秒前
wkyt完成签到 ,获得积分10
7秒前
明亮幻枫应助aeuy采纳,获得10
8秒前
9秒前
9秒前
海人完成签到 ,获得积分10
9秒前
略略略完成签到 ,获得积分10
9秒前
充电宝应助等待的谷波采纳,获得10
9秒前
叶青发布了新的文献求助30
10秒前
lareina发布了新的文献求助10
11秒前
pluto发布了新的文献求助10
11秒前
Jun完成签到 ,获得积分10
11秒前
Iridescent发布了新的文献求助10
11秒前
jw发布了新的文献求助10
12秒前
13秒前
袁大头发布了新的文献求助10
13秒前
Darknewnew发布了新的文献求助10
13秒前
gnufgg完成签到,获得积分10
13秒前
14秒前
wuyuzegang应助JT采纳,获得30
14秒前
YoLo完成签到 ,获得积分10
14秒前
huhu完成签到,获得积分10
15秒前
可靠盼旋完成签到,获得积分10
16秒前
完美世界应助jw采纳,获得10
16秒前
17秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819142
求助须知:如何正确求助?哪些是违规求助? 3362242
关于积分的说明 10416115
捐赠科研通 3080466
什么是DOI,文献DOI怎么找? 1694492
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388