化学
布地奈德
甘露糖受体
甘露糖
聚乙二醇
PEG比率
药物输送
生物化学
巨噬细胞
体外
免疫学
有机化学
医学
财务
经济
哮喘
作者
Ludmila P. Nascimento,Nicolas Tsapis,Franceline Reynaud,Didier Desmaële,Laurence Moine,Juliette Vergnaud,Sonia Abreu,Pierre Chaminade,Elias Fattal
标识
DOI:10.1016/j.ejpb.2021.12.001
摘要
In a strategy to improve macrophage targeting of glucocorticoids (GCs) for anti-inflammatory therapy, a so-called nanoprodrug of budesonide palmitate decorated by mannose moieties was designed. The synthesis of budesonide palmitate (BP) was obtained by esterification and mannosylated lipid (DSPE-PEG-Man) by reacting 1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (DSPE)-polyethylene glycol-amine and α-D-mannopyranosylphenyl isothiocyanate (MPITC). Nanoparticles were formulated by emulsion-evaporation and different ratios of mannosylated lipid were introduced in the formulation of BP nanoprodrugs. Using up to 75% of DSPE-PEG-man (75/25) led to 200 nm particles with a polydispersity index below 0.2, a negative zeta potential ranging from -10 to -30 mV, and one-month stability at 4 °C. The encapsulation efficiency of BP approached 100% proving that the prodrug was associated with the particles, leading to a final BP loading of 50-to 60% (w/w). The lectin agglutination test confirmed the availability of mannose on the nanoprodrug surface. Nanoprodrug uptake by RAW 264.7 macrophages was observed by confocal microscopy and flow cytometry. After 24 and 48 h of incubation, a significantly greater internalization of mannosylated nanoparticles as compared to PEGylated nanoparticles was achieved. The mannose receptor-mediated uptake was confirmed by a mannan inhibition study. After LPS-induced inflammation, the anti-inflammatory effect of mannosylated nanoparticles was assessed. After 48 h of incubation, cytokines (MCP-1 and TNFα) were reduced demonstrating that the functionalization of nanoprodrugs is possible and efficient.
科研通智能强力驱动
Strongly Powered by AbleSci AI