已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aligning Image Semantics and Label Concepts for Image Multi-Label Classification

计算机科学 人工智能 模式识别(心理学) 图形 突出 杠杆(统计) 特征(语言学) 上下文图像分类 图像(数学) 特征提取 残余物 编码器 理论计算机科学 算法 操作系统 哲学 语言学
作者
Wei Zhou,Zhiwu Xia,Peng Dou,Tao Su,Haifeng Hu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (2): 1-23 被引量:21
标识
DOI:10.1145/3550278
摘要

Image multi-label classification task is mainly to correctly predict multiple object categories in the images. To capture the correlation between labels, graph convolution network based methods have to manually count the label co-occurrence probability from training data to construct a pre-defined graph as the input of graph network, which is inflexible and may degrade model generalizability. Moreover, most of the current methods cannot effectively align the learned salient object features with the label concepts, so that the predicted results of model may not be consistent with the image content. Therefore, how to learn the salient semantic features of images and capture the correlation between labels, and then effectively align them is one of the key to improve the performance of image multi-label classification task. To this end, we propose a novel image multi-label classification framework which aims to align I mage S emantics with L abel C oncepts ( ISLC ). Specifically, we propose a residual encoder to learn salient object features in the images, and exploit the self-attention layer in aligned decoder to automatically capture the correlation between labels. Then, we leverage the cross-attention layers in aligned decoder to align image semantic features with label concepts, so as to make the labels predicted by model more consistent with image content. Finally, the output features of the last layer of residual encoder and aligned decoder are fused to obtain the final output feature for classification. The proposed ISLC model achieves good performance on various prevalent multi-label image datasets such as MS-COCO 2014, PASCAL VOC 2007, VG-500, and NUS-WIDE with 87.2%, 96.9%, 39.4%, and 64.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
chamberlain完成签到,获得积分10
7秒前
Viiigo完成签到,获得积分10
7秒前
8秒前
12秒前
汉堡包应助GuoShanjie采纳,获得10
12秒前
Hoolyshit发布了新的文献求助10
12秒前
leo0531完成签到 ,获得积分10
13秒前
13秒前
儒雅晓霜发布了新的文献求助10
16秒前
学术大拿完成签到 ,获得积分10
17秒前
共享精神应助582843216采纳,获得10
18秒前
科研通AI6应助yue采纳,获得30
21秒前
25秒前
小宇完成签到,获得积分10
26秒前
27秒前
罗小玲发布了新的文献求助10
33秒前
深情安青应助科研通管家采纳,获得10
36秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
ding应助科研通管家采纳,获得10
36秒前
桐桐应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
36秒前
MM完成签到 ,获得积分10
37秒前
Aaa_12012完成签到,获得积分10
38秒前
41秒前
Swear完成签到 ,获得积分10
41秒前
44秒前
44秒前
Haimian完成签到 ,获得积分0
48秒前
Jyy77完成签到 ,获得积分10
48秒前
582843216发布了新的文献求助10
49秒前
zzz发布了新的文献求助10
49秒前
夏天无完成签到 ,获得积分10
52秒前
54秒前
花花关注了科研通微信公众号
54秒前
Vivian完成签到,获得积分10
55秒前
我是老大应助582843216采纳,获得10
59秒前
xinxin完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525102
关于积分的说明 14100961
捐赠科研通 4438850
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504