Novel Machine Learning Approach for the Prediction of Hernia Recurrence, Surgical Complication, and 30-Day Readmission after Abdominal Wall Reconstruction

医学 接收机工作特性 并发症 曲线下面积 外科 内科学
作者
Abbas M. Hassan,Sheng-Chieh Lu,Malke Asaad,Jun Liu,Anaeze C. Offodile,Chris Sidey‐Gibbons,Charles E. Butler
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
卷期号:234 (5): 918-927 被引量:31
标识
DOI:10.1097/xcs.0000000000000141
摘要

Despite advancements in abdominal wall reconstruction (AWR) techniques, hernia recurrences (HRs), surgical site occurrences (SSOs), and unplanned hospital readmissions persist. We sought to develop, validate, and evaluate machine learning (ML) algorithms for predicting complications after AWR.We conducted a comprehensive review of patients who underwent AWR from March 2005 to June 2019. Nine supervised ML algorithms were developed to preoperatively predict HR, SSOs, and 30-day readmission. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 725 patients (52% women), with a mean age of 60 ± 11.5 years, mean body mass index of 31 ± 7 kg/m2, and mean follow-up time of 42 ± 29 months. The HR rate was 12.8%, SSO rate was 30%, and 30-day readmission rate was 10.9%. ML models demonstrated good discriminatory performance for predicting HR (area under the receiver operating characteristic curve [AUC] 0.71), SSOs (AUC 0.75), and 30-day readmission (AUC 0.74). ML models achieved mean accuracy rates of 85% (95% CI 80% to 90%), 72% (95% CI 64% to 80%), and 84% (95% CI 77% to 90%) for predicting HR, SSOs, and 30-day readmission, respectively. ML identified and characterized 4 unique significant predictors of HR, 12 of SSOs, and 3 of 30-day readmission. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold.ML algorithms trained on readily available preoperative clinical data accurately predicted complications of AWR. Our findings support incorporating ML models into the preoperative assessment of patients undergoing AWR to provide data-driven, patient-specific risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助合适冰棍采纳,获得10
刚刚
阿卡贝拉发布了新的文献求助10
刚刚
打打应助杨杨采纳,获得10
1秒前
1秒前
onlyan发布了新的文献求助10
2秒前
没有昵称发布了新的文献求助10
2秒前
zz完成签到,获得积分10
3秒前
3秒前
3秒前
二狗完成签到 ,获得积分10
4秒前
在水一方应助欢喜初雪采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
wzx发布了新的文献求助10
5秒前
Ado发布了新的文献求助10
5秒前
Kyra12完成签到,获得积分10
6秒前
搜集达人应助AZURE采纳,获得10
6秒前
tly完成签到,获得积分10
6秒前
corazon发布了新的文献求助10
6秒前
7秒前
浮游应助Rabbit采纳,获得10
7秒前
搜集达人应助酷酷菲音采纳,获得10
7秒前
烟花应助heshuyao采纳,获得10
7秒前
科研通AI5应助娜娜娜娜采纳,获得10
8秒前
噜啦噜啦发布了新的文献求助10
8秒前
yy完成签到,获得积分10
9秒前
yangching完成签到,获得积分10
10秒前
平淡如南完成签到 ,获得积分10
10秒前
十点差一分完成签到,获得积分10
11秒前
尊敬依珊完成签到 ,获得积分10
11秒前
时来运转完成签到,获得积分10
13秒前
无敌鱼完成签到,获得积分10
14秒前
15秒前
17秒前
盐茶厅人完成签到,获得积分10
17秒前
18秒前
18秒前
酷波er应助舒服的凡之采纳,获得10
18秒前
英俊的铭应助阿卡贝拉采纳,获得10
19秒前
xp发布了新的文献求助10
19秒前
科研通AI5应助huax采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961621
求助须知:如何正确求助?哪些是违规求助? 4221941
关于积分的说明 13148901
捐赠科研通 4006027
什么是DOI,文献DOI怎么找? 2192662
邀请新用户注册赠送积分活动 1206508
关于科研通互助平台的介绍 1118222