A global seamless 1 km resolution daily land surface temperature dataset (2003–2020)

中分辨率成像光谱仪 缺少数据 环境科学 平滑的 像素 遥感 标准差 图像分辨率 气象学 计算机科学 地质学 统计 卫星 数学 地理 人工智能 工程类 计算机视觉 航空航天工程
作者
Tao Zhang,Yuyu Zhou,Zhengyuan Zhu,Xiaoma Li,Ghassem Asrar
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:14 (2): 651-664 被引量:89
标识
DOI:10.5194/essd-14-651-2022
摘要

Abstract. Land surface temperature (LST) is one of the most important and widely used parameters for studying land surface processes. Moderate Resolution Imaging Spectroradiometer (MODIS) LST products (e.g., MOD11A1 and MYD11A1) can provide this information with moderate spatiotemporal resolution with global coverage. However, the applications of these data are hampered because of missing values caused by factors such as cloud contamination, indicating the necessity to produce a seamless global MODIS-like LST dataset, which is still not available. In this study, we used a spatiotemporal gap-filling framework to generate a seamless global 1 km daily (mid-daytime and mid-nighttime) MODIS-like LST dataset from 2003 to 2020 based on standard MODIS LST products. The method includes two steps: (1) data pre-processing and (2) spatiotemporal fitting. In the data pre-processing, we filtered pixels with low data quality and filled gaps using the observed LST at another three time points of the same day. In the spatiotemporal fitting, first we fitted the temporal trend (overall mean) of observations based on the day of year (independent variable) in each pixel using the smoothing spline function. Then we spatiotemporally interpolated residuals between observations and overall mean values for each day. Finally, we estimated missing values of LST by adding the overall mean and interpolated residuals. The results show that the missing values in the original MODIS LST were effectively and efficiently filled with reduced computational cost, and there is no obvious block effect caused by large areas of missing values, especially near the boundary of tiles, which might exist in other seamless LST datasets. The cross-validation with different missing rates at the global scale indicates that the gap-filled LST data have high accuracies with the average root mean squared error (RMSE) of 1.88 and 1.33∘, respectively, for mid-daytime (13:30) and mid-nighttime (01:30). The seamless global daily (mid-daytime and mid-nighttime) LST dataset at a 1 km spatial resolution is of great use in global studies of urban systems, climate research and modeling, and terrestrial ecosystem studies. The data are available at Iowa State University's DataShare at https://doi.org/10.25380/iastate.c.5078492 (T. Zhang et al., 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助目分采纳,获得10
刚刚
刚刚
走走发布了新的文献求助10
2秒前
征途完成签到,获得积分10
2秒前
脚踏实地i发布了新的文献求助10
2秒前
共享精神应助yao采纳,获得10
4秒前
Yning发布了新的文献求助10
4秒前
ding应助北酱采纳,获得10
5秒前
li完成签到,获得积分10
5秒前
hxy发布了新的文献求助10
5秒前
cndxh发布了新的文献求助50
6秒前
6秒前
所所应助hwezhu采纳,获得10
6秒前
6秒前
Chan发布了新的文献求助30
6秒前
小白鼠完成签到 ,获得积分10
7秒前
7秒前
7秒前
顺顺利利完成签到 ,获得积分20
8秒前
236完成签到,获得积分10
9秒前
小白猫完成签到,获得积分10
9秒前
汉堡包应助蓝色芒果采纳,获得10
9秒前
9秒前
聪明初彤完成签到,获得积分10
10秒前
积极老四完成签到,获得积分10
10秒前
ZhGeer发布了新的文献求助10
11秒前
12秒前
12秒前
14秒前
14秒前
小白猫发布了新的文献求助10
14秒前
佳佳的小宝贝完成签到 ,获得积分10
15秒前
无花果应助whl采纳,获得10
15秒前
15秒前
16秒前
恒吴宇发布了新的文献求助10
17秒前
李健应助小饭采纳,获得10
17秒前
宋青蔚发布了新的文献求助10
18秒前
长不大的幼稚完成签到 ,获得积分20
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183871
求助须知:如何正确求助?哪些是违规求助? 4370008
关于积分的说明 13608357
捐赠科研通 4221858
什么是DOI,文献DOI怎么找? 2315513
邀请新用户注册赠送积分活动 1314083
关于科研通互助平台的介绍 1263010