硫醚
卟啉
表面改性
水溶液
聚合物
吡咯
共聚物
吸附
化学
组合化学
材料科学
缩聚物
化学工程
高分子化学
有机化学
物理化学
工程类
作者
Lizhi Wang,Jiajia Wang,You Wang,Fa Zhou,Jianhan Huang
标识
DOI:10.1016/j.jhazmat.2022.128303
摘要
In this paper, thioether-functionalized porphyrin-based polymers (TPPs) were constructed according to two different "bottom-up" and "top-down" strategies and they were applied for Hg2+ capture in aqueous solution. TPP1, which was constructed by one-step polycondensation of 2,5-bis(methylthio) terephthalaldehyde (BMTA) with pyrrole according to the "bottom-up" strategy, owned high Brunauer-Emmett-Teller (BET) surface area (SBET, 554 m2/g), pore volume (Vtotal, 0.32 cm3/g), and S content (16.8%), resulting in high Hg2+ capture (913 mg/g) with high removal efficiency (> 99%). The adsorption mechanism clarified that the strong coordination between the S species and Hg2+ was the main driving force. In comparison, TPP2 and TPP3 were fabricated by the thioether functionalization of the porphyrin-based polymers according to the "top-down" strategy. They showed much lower SBET, Vtotal, and S content for the reason that the post-functionalization process greatly blocked the pores and the functional sites were hardly fully post-functionalized, resulting in much lower Hg2+ capture (555 mg/g and 609 mg/g, respectively). This work reveals the advantage of the "bottom-up" strategy for the construction of the thioether-functionalized polymers and it offers the guidance for the construction of some other thioether-functionalized polymers.
科研通智能强力驱动
Strongly Powered by AbleSci AI