Discovering trends and hotspots of biosafety and biosecurity research via machine learning

生物安全 生物安全 计算机科学 数据科学 生物 生物技术 生态学
作者
Renchu Guan,Haoyu Pang,Yanchun Liang,Zhongjun Shao,Xin Gao,Dong Xu,Xiaoyue Feng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:2
标识
DOI:10.1093/bib/bbac194
摘要

Abstract Coronavirus disease 2019 (COVID-19) has infected hundreds of millions of people and killed millions of them. As an RNA virus, COVID-19 is more susceptible to variation than other viruses. Many problems involved in this epidemic have made biosafety and biosecurity (hereafter collectively referred to as ‘biosafety’) a popular and timely topic globally. Biosafety research covers a broad and diverse range of topics, and it is important to quickly identify hotspots and trends in biosafety research through big data analysis. However, the data-driven literature on biosafety research discovery is quite scant. We developed a novel topic model based on latent Dirichlet allocation, affinity propagation clustering and the PageRank algorithm (LDAPR) to extract knowledge from biosafety research publications from 2011 to 2020. Then, we conducted hotspot and trend analysis with LDAPR and carried out further studies, including annual hot topic extraction, a 10-year keyword evolution trend analysis, topic map construction, hot region discovery and fine-grained correlation analysis of interdisciplinary research topic trends. These analyses revealed valuable information that can guide epidemic prevention work: (1) the research enthusiasm over a certain infectious disease not only is related to its epidemic characteristics but also is affected by the progress of research on other diseases, and (2) infectious diseases are not only strongly related to their corresponding microorganisms but also potentially related to other specific microorganisms. The detailed experimental results and our code are available at https://github.com/KEAML-JLU/Biosafety-analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小鱼完成签到,获得积分10
刚刚
刚刚
1秒前
honglinbai完成签到,获得积分20
1秒前
1秒前
1秒前
学术大亨发布了新的文献求助10
2秒前
小马甲应助感动笑采纳,获得10
2秒前
2秒前
3秒前
mamama发布了新的文献求助10
4秒前
4秒前
gogogo完成签到 ,获得积分10
4秒前
斯文败类应助71采纳,获得10
5秒前
5秒前
sophie发布了新的文献求助10
6秒前
6秒前
冰棒比冰冰完成签到 ,获得积分10
6秒前
龙玉环完成签到,获得积分10
6秒前
欢喜雪瑶关注了科研通微信公众号
6秒前
7秒前
刘佳完成签到 ,获得积分10
7秒前
xxh发布了新的文献求助10
7秒前
luyuhao3完成签到,获得积分10
7秒前
7秒前
李健应助永不止步采纳,获得10
8秒前
linjiebro完成签到,获得积分10
8秒前
8秒前
9秒前
凉翊发布了新的文献求助10
9秒前
10秒前
B哥完成签到,获得积分10
10秒前
11秒前
善良猪猫发布了新的文献求助10
11秒前
11秒前
Hello应助受伤芝麻采纳,获得10
12秒前
精明凡双应助Piautos采纳,获得10
13秒前
SciGPT应助冷傲的小土豆采纳,获得10
13秒前
Hello应助sophie采纳,获得10
13秒前
科研通AI5应助一见喜采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4496113
求助须知:如何正确求助?哪些是违规求助? 3948001
关于积分的说明 12241333
捐赠科研通 3605646
什么是DOI,文献DOI怎么找? 1983341
邀请新用户注册赠送积分活动 1019912
科研通“疑难数据库(出版商)”最低求助积分说明 912414