主成分分析
人工智能
拉曼光谱
支持向量机
金标准(测试)
线性判别分析
模式识别(心理学)
计算机科学
医学
内科学
光学
物理
作者
Manman Lin,Haisheng Ou,Peng Zhang,Yanhong Meng,Shenghao Wang,Jing Chang,Aiguo Shen,Ji‐Ming Hu
标识
DOI:10.1016/j.saa.2022.121542
摘要
Alzheimer’s disease (AD) is a common nervous system disease to affect mostly elderly people over the age of 65 years. However, the diagnosis of AD is mainly depend on the imaging examination, clinical assessments and neuropsychological tests, which may get error diagnosis results and are not able to detect early AD. Here, a rapid, non-invasive, and high accuracy diagnostic method for AD especially early AD is provided based on the laser tweezers Raman spectroscopy (LTRS) combined with machine learning algorithms. AD platelets from different 3xTg-AD transgenic rats at different stages of disease are captured to collect high signal-to-noise ratio Raman signals without contact by LTRS, which is then combined with partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and principal component analysis (PCA)-canonical discriminate function (CDA) for classification. The results show that the normal and diseased platelets at 3-, 6- and 12-month AD are successfully distinguished and the accuracy is 91%, 68% and 97% respectively, which demonstrates the suggested method can provide a precise detection for AD diagnosis at early, middle and advanced stages.
科研通智能强力驱动
Strongly Powered by AbleSci AI