DMU-Net: Dual-route mirroring U-Net with mutual learning for malignant thyroid nodule segmentation

结核(地质) 分割 计算机科学 甲状腺结节 子网 人工智能 深度学习 图像分割 甲状腺 模式识别(心理学) 医学 内科学 生物 计算机网络 古生物学
作者
Qinghan Yang,Chong Geng,Ruyue Chen,Chen Pang,Run Han,Lei Lyu,Yuang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:77: 103805-103805 被引量:13
标识
DOI:10.1016/j.bspc.2022.103805
摘要

It is meaningful for radiologists to segment thyroid nodules in ultrasound images quickly and accurately using an effective segmentation algorithm. With the rise of deep learning in computer vision, many deep learning-based methods have been proposed to assist radiologists in diagnosing thyroid diseases, such as thyroid nodule classification, detection and segmentation, but there exist few methods paying attention to malignant thyroid nodule segmentation. The goal of thyroid nodule segmentation is to identify the type of thyroid nodule. However, the identification of thyroid nodule type has been relatively well developed and the identification work almost can’t bother radiologists. The more important for radiologists is to detect the inconspicuous malignant nodules precisely in ultrasonic images, avoiding radiologists confusing tissues and malignant thyroid nodules during their diagnosis. This paper proposes a deep learning-based CAD (Computer-aided diagnosis) method called Dual-route Mirroring U-Net (DMU-Net) to segment malignant thyroid nodules automatically. The method uses two subnets (U-shape subnet, inversed U-shape subnet) and three modules (pyramid attention module (PAM), margin refinement module (MRM), aggregation module (AM)) to extract contextual information of thyroid nodules and margin details in ultrasonic images. Further, the strategy of mutual learning is introduced from the natural image classification task to enhance the performance of DMU-Net. We train and evaluate our method on the self-built Malignant Thyroid Nodule Segmentation (MTNS) dataset. Finally, we compare the DMU-Net with several classical deep learning-based methods on the MTNS dataset and other public datasets. The results show our DMU-Net can achieve superior performance on these datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研助手6应助ran采纳,获得30
1秒前
无花果应助hutu采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
木子苏完成签到 ,获得积分10
2秒前
sink发布了新的文献求助30
2秒前
徐瑕客发布了新的文献求助10
2秒前
对你如初完成签到,获得积分10
4秒前
rrmj发布了新的文献求助10
4秒前
香蕉南晴发布了新的文献求助10
4秒前
李健的小迷弟应助吉吉采纳,获得10
4秒前
隐形曼青应助板栗采纳,获得10
4秒前
5秒前
久久发布了新的文献求助10
6秒前
reflux应助yun采纳,获得30
6秒前
weizheng完成签到,获得积分0
6秒前
7秒前
7秒前
bkagyin应助土豪的康采纳,获得10
7秒前
dachengzi发布了新的文献求助10
7秒前
aa发布了新的文献求助10
8秒前
8秒前
zhangzhang完成签到,获得积分20
9秒前
9秒前
ggh发布了新的文献求助10
10秒前
poohpooh发布了新的文献求助10
10秒前
11秒前
仲夏之乐完成签到 ,获得积分10
11秒前
贪玩嫣发布了新的文献求助10
12秒前
Akim应助和和和采纳,获得10
12秒前
Lei发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
仲夏发布了新的文献求助30
15秒前
完美世界应助落叶采纳,获得80
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907