生物
体细胞核移植
染色质
卵母细胞
细胞生物学
微量注射
前期
生发泡
路西法黄
胚泡
男科
减数分裂
遗传学
胚胎
胚胎发生
缝隙连接
DNA
医学
细胞内
基因
作者
Cecilia Dieci,Valentina Lodde,Federica Franciosi,Irina Lagutina,Irene Tessaro,S. Modina,David F. Albertini,Giovanna Lazzari,Cesare Galli,A.M. Luciano
标识
DOI:10.1095/biolreprod.113.110577
摘要
In the pig, the efficiency of in vitro embryo production and somatic cell nuclear transfer (SCNT) procedures remains limited. It has been suggested that prematuration treatments (pre-IVM) based on the prolongation of a patent, bidirectional crosstalk between the oocyte and the cumulus cells through gap junction mediate communication (GJC), with the maintenance of a proper level of cAMP, could improve the developmental capability of oocytes. The aim of this study was to assess: 1) dose-dependent effects of cilostamide on nuclear maturation kinetics, 2) the relationship between treatments on GJC functionality and large-scale chromatin configuration changes, and 3) the impact of treatments on developmental competence acquisition after parthenogenetic activation (PA) and SCNT. Accordingly, cumulus-oocyte complexes were collected from 3- to 6-mm antral follicles and cultured for 24 h in defined culture medium with or without 1 μM cilostamide. GJC functionality was assessed by Lucifer yellow microinjection, while chromatin configuration was evaluated by fluorescence microscopy after nuclear staining. Cilostamide administration sustained functional coupling for up to 24 h of culture and delayed meiotic resumption, as only 25.6% of cilostamide-treated oocytes reached the pro-metaphase I stage compared to the control (69.7%; P < 0.05). Moreover, progressive chromatin condensation was delayed before meiotic resumption based upon G2/M biomarker phosphoprotein epitope acquisition using immunolocalization. Importantly, cilostamide treatment under these conditions improved oocyte developmental competence, as reflected in higher blastocyst quality after both parthenogenetic activation and SCNT.
科研通智能强力驱动
Strongly Powered by AbleSci AI