Efficient Methods to Compute Genomic Predictions

连锁不平衡 基因组选择 统计 联动装置(软件) 选择(遗传算法) 人口 基因分型 等位基因频率 数学 遗传学 近亲繁殖 生物 等位基因 计算机科学 基因型 单核苷酸多态性 人工智能 医学 环境卫生 基因
作者
P.M. VanRaden
出处
期刊:Journal of Dairy Science [Elsevier]
卷期号:91 (11): 4414-4423 被引量:5865
标识
DOI:10.3168/jds.2007-0980
摘要

Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously. Algorithms were derived and computer programs tested with simulated data for 2,967 bulls and 50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding coefficients required accurate estimates of allele frequencies in the base population. Linear model predictions of breeding values were computed by 3 equivalent methods: 1) iteration for individual allele effects followed by summation across loci to obtain estimated breeding values, 2) selection index including a genomic relationship matrix, and 3) mixed model equations including the inverse of genomic relationships. A blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects. Reliability of predicted net merit for young bulls was 63% compared with 32% using the traditional relationship matrix. Nonlinear predictions were also computed using iteration on data and nonlinear regression on marker deviations; an additional (about 3%) gain in reliability for young bulls increased average reliability to 66%. Computing times increased linearly with number of genotypes. Estimation of allele frequencies required 2 processor days, and genomic predictions required <1 d per trait, and traits were processed in parallel. Information from genotyping was equivalent to about 20 daughters with phenotypic records. Actual gains may differ because the simulation did not account for linkage disequilibrium in the base population or selection in subsequent generations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
chenqiumu应助zxl采纳,获得30
2秒前
yiyi131发布了新的文献求助10
3秒前
海英发布了新的文献求助20
4秒前
okra给一叶舟的求助进行了留言
4秒前
苹果傲芙发布了新的文献求助10
4秒前
5秒前
chenchen111发布了新的文献求助10
6秒前
共享精神应助江湖樊南生采纳,获得10
6秒前
7秒前
7秒前
躺平的洋仔完成签到,获得积分10
8秒前
9秒前
可靠板栗发布了新的文献求助10
10秒前
10秒前
就这发布了新的文献求助10
11秒前
负责青亦完成签到 ,获得积分10
11秒前
Gavin完成签到,获得积分10
11秒前
12秒前
12秒前
SSSS完成签到,获得积分10
12秒前
12秒前
junzzz完成签到,获得积分10
12秒前
打打应助xdc采纳,获得10
13秒前
科研互通完成签到,获得积分10
13秒前
刘旦生发布了新的文献求助10
13秒前
13秒前
吴兰田完成签到,获得积分10
14秒前
小二郎应助70采纳,获得30
15秒前
戈多发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560