已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Validating the LASSO algorithm by unmixing spectral signatures in multicolor phantoms

Lasso(编程语言) 高光谱成像 计算机科学 背景(考古学) 算法 数据挖掘 人工智能 生物 万维网 古生物学
作者
Daniel V. Samarov,Matthew L. Clarke,Ji Yoon Lee,David W. Allen,Maritoni Litorja,Jeeseong Hwang
出处
期刊:Proceedings of SPIE 卷期号:8229: 82290Z-82290Z 被引量:4
标识
DOI:10.1117/12.908133
摘要

As hyperspectral imaging (HSI) sees increased implementation into the biological and medical elds it becomes increasingly important that the algorithms being used to analyze the corresponding output be validated. While certainly important under any circumstance, as this technology begins to see a transition from benchtop to bedside ensuring that the measurements being given to medical professionals are accurate and reproducible is critical. In order to address these issues work has been done in generating a collection of datasets which could act as a test bed for algorithms validation. Using a microarray spot printer a collection of three food color dyes, acid red 1 (AR), brilliant blue R (BBR) and erioglaucine (EG) are mixed together at dierent concentrations in varying proportions at dierent locations on a microarray chip. With the concentration and mixture proportions known at each location, using HSI an algorithm should in principle, based on estimates of abundances, be able to determine the concentrations and proportions of each dye at each location on the chip. These types of data are particularly important in the context of medical measurements as the resulting estimated abundances will be used to make critical decisions which can have a serious impact on an individual's health. In this paper we present a novel algorithm for processing and analyzing HSI data based on the LASSO algorithm (similar to "basis pursuit"). The LASSO is a statistical method for simultaneously performing model estimation and variable selection. In the context of estimating abundances in an HSI scene these so called "sparse" representations provided by the LASSO are appropriate as not every pixel will be expected to contain every endmember. The algorithm we present takes the general framework of the LASSO algorithm a step further and incorporates the rich spatial information which is available in HSI to further improve the estimates of abundance. We show our algorithm's improvement over the standard LASSO using the dye mixture data as the test bed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦海露发布了新的文献求助10
2秒前
倪妮完成签到,获得积分10
3秒前
乐乐应助1111采纳,获得10
4秒前
5秒前
满意书包完成签到 ,获得积分10
6秒前
8秒前
舒心笑白完成签到,获得积分10
9秒前
11秒前
斯文的寒凝完成签到,获得积分10
12秒前
可爱的函函应助lpk采纳,获得10
12秒前
12秒前
12秒前
14秒前
15秒前
1111发布了新的文献求助10
17秒前
shang发布了新的文献求助10
18秒前
qwert完成签到,获得积分10
20秒前
CodeCraft应助科研菜鸟采纳,获得10
21秒前
漂亮的寄真完成签到,获得积分10
21秒前
万安完成签到 ,获得积分10
23秒前
24秒前
24秒前
舒心笑白发布了新的文献求助10
27秒前
27秒前
lpk发布了新的文献求助10
27秒前
28秒前
wenhuanwenxian完成签到 ,获得积分10
28秒前
30秒前
YElv完成签到,获得积分10
30秒前
科研菜鸟完成签到,获得积分10
31秒前
九日发布了新的文献求助10
31秒前
Sun发布了新的文献求助10
31秒前
科研菜鸟发布了新的文献求助10
35秒前
xxfsx应助bi采纳,获得10
35秒前
共享精神应助九日采纳,获得10
37秒前
hhh2018687完成签到,获得积分10
39秒前
科研通AI6应助1111采纳,获得10
40秒前
43秒前
44秒前
天天快乐应助lpk采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5160158
求助须知:如何正确求助?哪些是违规求助? 4354342
关于积分的说明 13558222
捐赠科研通 4198390
什么是DOI,文献DOI怎么找? 2302540
邀请新用户注册赠送积分活动 1302628
关于科研通互助平台的介绍 1247933