趋化性
数学
先验与后验
先验估计
指数
功能(生物学)
灵敏度(控制系统)
数学分析
类型(生物学)
非线性系统
应用数学
物理
生物
化学
受体
哲学
工程类
认识论
进化生物学
量子力学
生物化学
语言学
电子工程
生态学
作者
Dirk Horstmann,Michael Winkler
标识
DOI:10.1016/j.jde.2004.10.022
摘要
We determine the critical blow-up exponent for a Keller–Segel-type chemotaxis model, where the chemotactic sensitivity equals some nonlinear function of the particle density. Assuming some growth conditions for the chemotactic sensitivity function we establish an a priori estimate for the solution of the problem considered and conclude the global existence and boundedness of the solution. Furthermore, we prove the existence of solutions that become unbounded in finite or infinite time in that situation where this a priori estimate fails.
科研通智能强力驱动
Strongly Powered by AbleSci AI