Decision Curve Analysis: A Novel Method for Evaluating Prediction Models

航程(航空) 计算机科学 决策模型 集合(抽象数据类型) 预测建模 决策分析 统计 计量经济学 机器学习 数学 数据挖掘 复合材料 材料科学 程序设计语言
作者
Andrew J. Vickers,Elena B. Elkin
出处
期刊:Medical Decision Making [SAGE Publishing]
卷期号:26 (6): 565-574 被引量:3986
标识
DOI:10.1177/0272989x06295361
摘要

Background. Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes but often require collection of additional information and may be cumbersome to apply to models that yield a continuous result. The authors sought a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. Method. The authors describe decision curve analysis, a simple, novel method of evaluating predictive models. They start by assuming that the threshold probability of a disease or event at which a patient would opt for treatment is informative of how the patient weighs the relative harms of a false-positive and a false-negative prediction. This theoretical relationship is then used to derive the net benefit of the model across different threshold probabilities. Plotting net benefit against threshold probability yields the “decision curve.” The authors apply the method to models for the prediction of seminal vesicle invasion in prostate cancer patients. Decision curve analysis identified the range of threshold probabilities in which a model was of value, the magnitude of benefit, and which of several models was optimal. Conclusion. Decision curve analysis is a suitable method for evaluating alternative diagnostic and prognostic strategies that has advantages over other commonly used measures and techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Loki应助YY本Y采纳,获得60
1秒前
沉静的靖巧完成签到,获得积分20
1秒前
2秒前
orixero应助wst1988采纳,获得10
2秒前
周小笛完成签到 ,获得积分10
2秒前
shiyi完成签到 ,获得积分10
3秒前
Orange应助福满財多采纳,获得10
3秒前
111111完成签到,获得积分10
4秒前
wangyitong完成签到 ,获得积分10
4秒前
stars完成签到,获得积分10
4秒前
打打应助默默沛槐采纳,获得10
4秒前
万能图书馆应助Young采纳,获得10
4秒前
开心的含雁完成签到,获得积分10
4秒前
踏浪浪发布了新的文献求助30
5秒前
静心安逸发布了新的文献求助80
5秒前
MG_aichy完成签到,获得积分10
5秒前
161939发布了新的文献求助10
5秒前
5秒前
5秒前
白小黑发布了新的文献求助10
6秒前
feng发布了新的文献求助30
6秒前
6秒前
脑洞疼应助aze采纳,获得10
6秒前
科研通AI2S应助舒适的亦瑶采纳,获得50
7秒前
汉堡包应助未来可期采纳,获得10
7秒前
8秒前
天菱完成签到,获得积分10
8秒前
8秒前
8秒前
小李在呢发布了新的文献求助10
9秒前
narcol完成签到 ,获得积分10
10秒前
好家伙完成签到,获得积分20
10秒前
gu发布了新的文献求助10
10秒前
dddsss发布了新的文献求助10
11秒前
动力小滋发布了新的文献求助10
11秒前
秧秧完成签到,获得积分10
11秒前
11秒前
Hello应助快乐小狗采纳,获得10
12秒前
12秒前
NF404应助未来可期采纳,获得200
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4096290
求助须知:如何正确求助?哪些是违规求助? 3634194
关于积分的说明 11519829
捐赠科研通 3344780
什么是DOI,文献DOI怎么找? 1838300
邀请新用户注册赠送积分活动 905819
科研通“疑难数据库(出版商)”最低求助积分说明 823404